]> Introduction BFD what is it? BFD is a package which allows applications to use the same routines to operate on object files whatever the object file format. A new object file format can be supported simply by creating a new BFD back end and adding it to the library. BFD is split into two parts: the front end, and the back ends (one for each object file format). The front end of BFD provides the interface to the user. It managesmemory and various canonical data structures. The front end alsodecides which back end to use and when to call back end routines. The back ends provide BFD its view of the real world. Each backend provides a set of calls which the BFD front end can use to maintainits canonical form. The back ends also may keep around information fortheir own use, for greater efficiency. History One spur behind BFD was the desire, on the part of the GNU 960 team at Intel Oregon, for interoperability of applications on their COFF and b.out file formats. Cygnus was providing GNU support for the team, and was contracted to provide the required functionality. The name came from a conversation David Wallace was having with Richard Stallman about the library: RMS said that it would be quite hard—David said “BFD”. Stallman was right, but the name stuck. At the same time, Ready Systems wanted much the same thing, but for different object file formats: IEEE-695, Oasys, Srecords, a.out and 68k coff. BFD was first implemented by members of Cygnus Support; Steve Chamberlain (sac@cygnus.com), John Gilmore (gnu@cygnus.com), K. Richard Pixley (rich@cygnus.com) and David Henkel-Wallace (gumby@cygnus.com). How To Use BFD To use the library, include bfd.h and link with libbfd.a. BFD provides a common interface to the parts of an object file for a calling application. When an application successfully opens a target file (object, archive, or whatever), a pointer to an internal structure is returned. This pointer points to a structure called bfd, described in bfd.h. Our convention is to call this pointer a BFD, and instances of it within code abfd. All operations on the target object file are applied as methods to the BFD. The mapping is defined within bfd.h in a set of macros, all beginning with ‘bfd_’ to reduce namespace pollution. For example, this sequence does what you would probably expect: return the number of sections in an object file attached to a BFD abfd. #include "bfd.h" unsigned int number_of_sections (abfd) bfd *abfd; { return bfd_count_sections (abfd); } The abstraction used within BFD is that an object file has: a header, a number of sections containing raw data (see ), a set of relocations (see ), and some symbol information (see ). Also, BFDs opened for archives have the additional attribute of an index and contain subordinate BFDs. This approach is fine for a.out and coff, but loses efficiency when applied to formats such as S-records and IEEE-695. What BFD Version 2 Can Do When an object file is opened, BFD subroutines automatically determine the format of the input object file. They then build a descriptor in memory with pointers to routines that will be used to access elements of the object file's data structures. As different information from the object files is required, BFD reads from different sections of the file and processes them. For example, a very common operation for the linker is processing symbol tables. Each BFD back end provides a routine for converting between the object file's representation of symbols and an internal canonical format. When the linker asks for the symbol table of an object file, it calls through a memory pointer to the routine from the relevant BFD back end which reads and converts the table into a canonical form. The linker then operates upon the canonical form. When the link is finished and the linker writes the output file's symbol table, another BFD back end routine is called to take the newly created symbol table and convert it into the chosen output format. Information Loss Information can be lost during output. The output formats supported by BFD do not provide identical facilities, and information which can be described in one form has nowhere to go in another format. One example of this is alignment information in b.out. There is nowhere in an a.out format file to store alignment information on the contained data, so when a file is linked from b.out and an a.out image is produced, alignment information will not propagate to the output file. (The linker will still use the alignment information internally, so the link is performed correctly). Another example is COFF section names. COFF files may contain an unlimited number of sections, each one with a textual section name. If the target of the link is a format which does not have many sections (e.g., a.out) or has sections without names (e.g., the Oasys format), the link cannot be done simply. You can circumvent this problem by describing the desired input-to-output section mapping with the linker command language. Information can be lost during canonicalization. The BFD internal canonical form of the external formats is not exhaustive; there are structures in input formats for which there is no direct representation internally. This means that the BFD back ends cannot maintain all possible data richness through the transformation between external to internal and back to external formats. This limitation is only a problem when an application reads one format and writes another. Each BFD back end is responsible for maintaining as much data as possible, and the internal BFD canonical form has structures which are opaque to the BFD core, and exported only to the back ends. When a file is read in one format, the canonical form is generated for BFD and the application. At the same time, the back end saves away any information which may otherwise be lost. If the data is then written back in the same format, the back end routine will be able to use the canonical form provided by the BFD core as well as the information it prepared earlier. Since there is a great deal of commonality between back ends, there is no information lost when linking or copying big endian COFF to little endian COFF, or a.out to b.out. When a mixture of formats is linked, the information is only lost from the files whose format differs from the destination. The BFD canonical object-file format The greatest potential for loss of information occurs when there is the least overlap between the information provided by the source format, that stored by the canonical format, and that needed by the destination format. A brief description of the canonical form may help you understand which kinds of data you can count on preserving across conversions. BFD canonical format internal object-file format files Information stored on a per-file basis includes target machinearchitecture, particular implementation format type, a demand pageablebit, and a write protected bit. Information like Unix magic numbers isnot stored here—only the magic numbers' meaning, so a ZMAGICfile would have both the demand pageable bit and the write protectedtext bit set. The byte order of the target is stored on a per-filebasis, so that big- and little-endian object files may be used with oneanother. sections Each section in the input file contains the name of the section, thesection's original address in the object file, size and alignmentinformation, various flags, and pointers into other BFD datastructures. symbols Each symbol contains a pointer to the information for the object filewhich originally defined it, its name, its value, and various flagbits. When a BFD back end reads in a symbol table, it relocates allsymbols to make them relative to the base of the section where they weredefined. Doing this ensures that each symbol points to its containingsection. Each symbol also has a varying amount of hidden private datafor the BFD back end. Since the symbol points to the original file, theprivate data format for that symbol is accessible. ld canoperate on a collection of symbols of wildly different formats withoutproblems.Normal global and simple local symbols are maintained on output, so anoutput file (no matter its format) will retain symbols pointing tofunctions and to global, static, and common variables. Some symbolinformation is not worth retaining; in a.out, type information isstored in the symbol table as long symbol names. This information wouldbe useless to most COFF debuggers; the linker has command line switchesto allow users to throw it away.There is one word of type information within the symbol, so if theformat supports symbol type information within symbols (for example, COFF,IEEE, Oasys) and the type is simple enough to fit within one word(nearly everything but aggregates), the information will be preserved. relocation level Each canonical BFD relocation record contains a pointer to the symbol torelocate to, the offset of the data to relocate, the section the datais in, and a pointer to a relocation type descriptor. Relocation isperformed by passing messages through the relocation typedescriptor and the symbol pointer. Therefore, relocations can be performedon output data using a relocation method that is only available in one of theinput formats. For instance, Oasys provides a byte relocation format.A relocation record requesting this relocation type would pointindirectly to a routine to perform this, so the relocation may beperformed on a byte being written to a 68k COFF file, even though 68k COFFhas no such relocation type. line numbers Object formats can contain, for debugging purposes, some form of mappingbetween symbols, source line numbers, and addresses in the output file.These addresses have to be relocated along with the symbol information.Each symbol with an associated list of line number records points to thefirst record of the list. The head of a line number list consists of apointer to the symbol, which allows finding out the address of thefunction whose line number is being described. The rest of the list ismade up of pairs: offsets into the section and line numbers. Any formatwhich can simply derive this information can pass it successfullybetween formats (COFF, IEEE and Oasys). BFD Front End typedef bfdA BFD has type bfd; objects of this type are the cornerstone of any application using BFD. Using BFD consists of making references though the BFD and to data in the BFD. Here is the structure that defines the type bfd. It contains the major data about the file and pointers to the rest of the data. struct bfd { /* A unique identifier of the BFD */ unsigned int id; /* The filename the application opened the BFD with. */ const char *filename; /* A pointer to the target jump table. */ const struct bfd_target *xvec; /* The IOSTREAM, and corresponding IO vector that provide access to the file backing the BFD. */ void *iostream; const struct bfd_iovec *iovec; /* Is the file descriptor being cached? That is, can it be closed as needed, and re-opened when accessed later? */ bfd_boolean cacheable; /* Marks whether there was a default target specified when the BFD was opened. This is used to select which matching algorithm to use to choose the back end. */ bfd_boolean target_defaulted; /* The caching routines use these to maintain a least-recently-used list of BFDs. */ struct bfd *lru_prev, *lru_next; /* When a file is closed by the caching routines, BFD retains state information on the file here... */ ufile_ptr where; /* ... and here: (``once'' means at least once). */ bfd_boolean opened_once; /* Set if we have a locally maintained mtime value, rather than getting it from the file each time. */ bfd_boolean mtime_set; /* File modified time, if mtime_set is TRUE. */ long mtime; /* Reserved for an unimplemented file locking extension. */ int ifd; /* The format which belongs to the BFD. (object, core, etc.) */ bfd_format format; /* The direction with which the BFD was opened. */ enum bfd_direction { no_direction = 0, read_direction = 1, write_direction = 2, both_direction = 3 } direction; /* Format_specific flags. */ flagword flags; /* Currently my_archive is tested before adding origin to anything. I believe that this can become always an add of origin, with origin set to 0 for non archive files. */ ufile_ptr origin; /* Remember when output has begun, to stop strange things from happening. */ bfd_boolean output_has_begun; /* A hash table for section names. */ struct bfd_hash_table section_htab; /* Pointer to linked list of sections. */ struct bfd_section *sections; /* The last section on the section list. */ struct bfd_section *section_last; /* The number of sections. */ unsigned int section_count; /* Stuff only useful for object files: The start address. */ bfd_vma start_address; /* Used for input and output. */ unsigned int symcount; /* Symbol table for output BFD (with symcount entries). */ struct bfd_symbol **outsymbols; /* Used for slurped dynamic symbol tables. */ unsigned int dynsymcount; /* Pointer to structure which contains architecture information. */ const struct bfd_arch_info *arch_info; /* Flag set if symbols from this BFD should not be exported. */ bfd_boolean no_export; /* Stuff only useful for archives. */ void *arelt_data; struct bfd *my_archive; /* The containing archive BFD. */ struct bfd *next; /* The next BFD in the archive. */ struct bfd *archive_head; /* The first BFD in the archive. */ bfd_boolean has_armap; /* A chain of BFD structures involved in a link. */ struct bfd *link_next; /* A field used by _bfd_generic_link_add_archive_symbols. This will be used only for archive elements. */ int archive_pass; /* Used by the back end to hold private data. */ union { struct aout_data_struct *aout_data; struct artdata *aout_ar_data; struct _oasys_data *oasys_obj_data; struct _oasys_ar_data *oasys_ar_data; struct coff_tdata *coff_obj_data; struct pe_tdata *pe_obj_data; struct xcoff_tdata *xcoff_obj_data; struct ecoff_tdata *ecoff_obj_data; struct ieee_data_struct *ieee_data; struct ieee_ar_data_struct *ieee_ar_data; struct srec_data_struct *srec_data; struct ihex_data_struct *ihex_data; struct tekhex_data_struct *tekhex_data; struct elf_obj_tdata *elf_obj_data; struct nlm_obj_tdata *nlm_obj_data; struct bout_data_struct *bout_data; struct mmo_data_struct *mmo_data; struct sun_core_struct *sun_core_data; struct sco5_core_struct *sco5_core_data; struct trad_core_struct *trad_core_data; struct som_data_struct *som_data; struct hpux_core_struct *hpux_core_data; struct hppabsd_core_struct *hppabsd_core_data; struct sgi_core_struct *sgi_core_data; struct lynx_core_struct *lynx_core_data; struct osf_core_struct *osf_core_data; struct cisco_core_struct *cisco_core_data; struct versados_data_struct *versados_data; struct netbsd_core_struct *netbsd_core_data; struct mach_o_data_struct *mach_o_data; struct mach_o_fat_data_struct *mach_o_fat_data; struct bfd_pef_data_struct *pef_data; struct bfd_pef_xlib_data_struct *pef_xlib_data; struct bfd_sym_data_struct *sym_data; void *any; } tdata; /* Used by the application to hold private data. */ void *usrdata; /* Where all the allocated stuff under this BFD goes. This is a struct objalloc *, but we use void * to avoid requiring the inclusion of objalloc.h. */ void *memory; }; Error reportingMost BFD functions return nonzero on success (check their individual documentation for precise semantics). On an error, they call bfd_set_error to set an error condition that callers can check by calling bfd_get_error. If that returns bfd_error_system_call, then check errno. The easiest way to report a BFD error to the user is to use bfd_perror. Type bfd_error_typeThe values returned by bfd_get_error are defined by the enumerated type bfd_error_type. typedef enum bfd_error { bfd_error_no_error = 0, bfd_error_system_call, bfd_error_invalid_target, bfd_error_wrong_format, bfd_error_wrong_object_format, bfd_error_invalid_operation, bfd_error_no_memory, bfd_error_no_symbols, bfd_error_no_armap, bfd_error_no_more_archived_files, bfd_error_malformed_archive, bfd_error_file_not_recognized, bfd_error_file_ambiguously_recognized, bfd_error_no_contents, bfd_error_nonrepresentable_section, bfd_error_no_debug_section, bfd_error_bad_value, bfd_error_file_truncated, bfd_error_file_too_big, bfd_error_on_input, bfd_error_invalid_error_code } bfd_error_type; bfd_get_error bfd_get_errorSynopsis bfd_error_type bfd_get_error (void); Description Return the current BFD error condition. bfd_set_error bfd_set_errorSynopsis void bfd_set_error (bfd_error_type error_tag, ...); Description Set the BFD error condition to be error_tag. If error_tag is bfd_error_on_input, then this function takes two more parameters, the input bfd where the error occurred, and the bfd_error_type error. bfd_errmsg bfd_errmsgSynopsis const char *bfd_errmsg (bfd_error_type error_tag); Description Return a string describing the error error_tag, or the system error if error_tag is bfd_error_system_call. bfd_perror bfd_perrorSynopsis void bfd_perror (const char *message); Description Print to the standard error stream a string describing the last BFD error that occurred, or the last system error if the last BFD error was a system call failure. If message is non-NULL and non-empty, the error string printed is preceded by message, a colon, and a space. It is followed by a newline. BFD error handlerSome BFD functions want to print messages describing the problem. They call a BFD error handler function. This function may be overridden by the program. The BFD error handler acts like printf. typedef void (*bfd_error_handler_type) (const char *, ...); bfd_set_error_handler bfd_set_error_handlerSynopsis bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type); Description Set the BFD error handler function. Returns the previous function. bfd_set_error_program_name bfd_set_error_program_nameSynopsis void bfd_set_error_program_name (const char *); Description Set the program name to use when printing a BFD error. This is printed before the error message followed by a colon and space. The string must not be changed after it is passed to this function. bfd_get_error_handler bfd_get_error_handlerSynopsis bfd_error_handler_type bfd_get_error_handler (void); Description Return the BFD error handler function. Miscellaneous Miscellaneous functions bfd_get_reloc_upper_bound bfd_get_reloc_upper_boundSynopsis long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect); Description Return the number of bytes required to store the relocation information associated with section sect attached to bfd abfd. If an error occurs, return -1. bfd_canonicalize_reloc bfd_canonicalize_relocSynopsis long bfd_canonicalize_reloc (bfd *abfd, asection *sec, arelent **loc, asymbol **syms); Description Call the back end associated with the open BFD abfd and translate the external form of the relocation information attached to sec into the internal canonical form. Place the table into memory at loc, which has been preallocated, usually by a call to bfd_get_reloc_upper_bound. Returns the number of relocs, or -1 on error. The syms table is also needed for horrible internal magic reasons. bfd_set_reloc bfd_set_relocSynopsis void bfd_set_reloc (bfd *abfd, asection *sec, arelent **rel, unsigned int count); Description Set the relocation pointer and count within section sec to the values rel and count. The argument abfd is ignored. bfd_set_file_flags bfd_set_file_flagsSynopsis bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags); Description Set the flag word in the BFD abfd to the value flags. Possible errors are: bfd_error_wrong_format - The target bfd was not of object format. bfd_error_invalid_operation - The target bfd was open for reading. bfd_error_invalid_operation -The flag word contained a bit which was not applicable to thetype of file. E.g., an attempt was made to set the D_PAGED biton a BFD format which does not support demand paging. bfd_get_arch_size bfd_get_arch_sizeSynopsis int bfd_get_arch_size (bfd *abfd); Description Returns the architecture address size, in bits, as determined by the object file's format. For ELF, this information is included in the header. Returns Returns the arch size in bits if known, -1 otherwise. bfd_get_sign_extend_vma bfd_get_sign_extend_vmaSynopsis int bfd_get_sign_extend_vma (bfd *abfd); Description Indicates if the target architecture "naturally" sign extends an address. Some architectures implicitly sign extend address values when they are converted to types larger than the size of an address. For instance, bfd_get_start_address() will return an address sign extended to fill a bfd_vma when this is the case. Returns Returns 1 if the target architecture is known to sign extend addresses, 0 if the target architecture is known to not sign extend addresses, and -1 otherwise. bfd_set_start_address bfd_set_start_addressSynopsis bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma); Description Make vma the entry point of output BFD abfd. Returns Returns TRUE on success, FALSE otherwise. bfd_get_gp_size bfd_get_gp_sizeSynopsis unsigned int bfd_get_gp_size (bfd *abfd); Description Return the maximum size of objects to be optimized using the GP register under MIPS ECOFF. This is typically set by the -G argument to the compiler, assembler or linker. bfd_set_gp_size bfd_set_gp_sizeSynopsis void bfd_set_gp_size (bfd *abfd, unsigned int i); Description Set the maximum size of objects to be optimized using the GP register under ECOFF or MIPS ELF. This is typically set by the -G argument to the compiler, assembler or linker. bfd_scan_vma bfd_scan_vmaSynopsis bfd_vma bfd_scan_vma (const char *string, const char **end, int base); Description Convert, like strtoul, a numerical expression string into a bfd_vma integer, and return that integer. (Though without as many bells and whistles as strtoul.) The expression is assumed to be unsigned (i.e., positive). If given a base, it is used as the base for conversion. A base of 0 causes the function to interpret the string in hex if a leading "0x" or "0X" is found, otherwise in octal if a leading zero is found, otherwise in decimal. If the value would overflow, the maximum bfd_vma value is returned. bfd_copy_private_header_data bfd_copy_private_header_dataSynopsis bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd); Description Copy private BFD header information from the BFD ibfd to the the BFD obfd. This copies information that may require sections to exist, but does not require symbol tables. Return true on success, false on error. Possible error returns are: bfd_error_no_memory -Not enough memory exists to create private data for obfd. #define bfd_copy_private_header_data(ibfd, obfd) \ BFD_SEND (obfd, _bfd_copy_private_header_data, \ (ibfd, obfd)) bfd_copy_private_bfd_data bfd_copy_private_bfd_dataSynopsis bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd); Description Copy private BFD information from the BFD ibfd to the the BFD obfd. Return TRUE on success, FALSE on error. Possible error returns are: bfd_error_no_memory -Not enough memory exists to create private data for obfd. #define bfd_copy_private_bfd_data(ibfd, obfd) \ BFD_SEND (obfd, _bfd_copy_private_bfd_data, \ (ibfd, obfd)) bfd_merge_private_bfd_data bfd_merge_private_bfd_dataSynopsis bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd); Description Merge private BFD information from the BFD ibfd to the the output file BFD obfd when linking. Return TRUE on success, FALSE on error. Possible error returns are: bfd_error_no_memory -Not enough memory exists to create private data for obfd. #define bfd_merge_private_bfd_data(ibfd, obfd) \ BFD_SEND (obfd, _bfd_merge_private_bfd_data, \ (ibfd, obfd)) bfd_set_private_flags bfd_set_private_flagsSynopsis bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags); Description Set private BFD flag information in the BFD abfd. Return TRUE on success, FALSE on error. Possible error returns are: bfd_error_no_memory -Not enough memory exists to create private data for obfd. #define bfd_set_private_flags(abfd, flags) \ BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags)) Other functions Other functionsDescription The following functions exist but have not yet been documented. #define bfd_sizeof_headers(abfd, info) \ BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info)) #define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \ BFD_SEND (abfd, _bfd_find_nearest_line, \ (abfd, sec, syms, off, file, func, line)) #define bfd_find_line(abfd, syms, sym, file, line) \ BFD_SEND (abfd, _bfd_find_line, \ (abfd, syms, sym, file, line)) #define bfd_find_inliner_info(abfd, file, func, line) \ BFD_SEND (abfd, _bfd_find_inliner_info, \ (abfd, file, func, line)) #define bfd_debug_info_start(abfd) \ BFD_SEND (abfd, _bfd_debug_info_start, (abfd)) #define bfd_debug_info_end(abfd) \ BFD_SEND (abfd, _bfd_debug_info_end, (abfd)) #define bfd_debug_info_accumulate(abfd, section) \ BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section)) #define bfd_stat_arch_elt(abfd, stat) \ BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat)) #define bfd_update_armap_timestamp(abfd) \ BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd)) #define bfd_set_arch_mach(abfd, arch, mach)\ BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach)) #define bfd_relax_section(abfd, section, link_info, again) \ BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again)) #define bfd_gc_sections(abfd, link_info) \ BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info)) #define bfd_merge_sections(abfd, link_info) \ BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info)) #define bfd_is_group_section(abfd, sec) \ BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec)) #define bfd_discard_group(abfd, sec) \ BFD_SEND (abfd, _bfd_discard_group, (abfd, sec)) #define bfd_link_hash_table_create(abfd) \ BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd)) #define bfd_link_hash_table_free(abfd, hash) \ BFD_SEND (abfd, _bfd_link_hash_table_free, (hash)) #define bfd_link_add_symbols(abfd, info) \ BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info)) #define bfd_link_just_syms(abfd, sec, info) \ BFD_SEND (abfd, _bfd_link_just_syms, (sec, info)) #define bfd_final_link(abfd, info) \ BFD_SEND (abfd, _bfd_final_link, (abfd, info)) #define bfd_free_cached_info(abfd) \ BFD_SEND (abfd, _bfd_free_cached_info, (abfd)) #define bfd_get_dynamic_symtab_upper_bound(abfd) \ BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd)) #define bfd_print_private_bfd_data(abfd, file)\ BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file)) #define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \ BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols)) #define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \ BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \ dyncount, dynsyms, ret)) #define bfd_get_dynamic_reloc_upper_bound(abfd) \ BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd)) #define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \ BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms)) extern bfd_byte *bfd_get_relocated_section_contents (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *, bfd_boolean, asymbol **); bfd_alt_mach_code bfd_alt_mach_codeSynopsis bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative); Description When more than one machine code number is available for the same machine type, this function can be used to switch between the preferred one (alternative == 0) and any others. Currently, only ELF supports this feature, with up to two alternate machine codes. struct bfd_preserve { void *marker; void *tdata; flagword flags; const struct bfd_arch_info *arch_info; struct bfd_section *sections; struct bfd_section *section_last; unsigned int section_count; struct bfd_hash_table section_htab; }; bfd_preserve_save bfd_preserve_saveSynopsis bfd_boolean bfd_preserve_save (bfd *, struct bfd_preserve *); Description When testing an object for compatibility with a particular target back-end, the back-end object_p function needs to set up certain fields in the bfd on successfully recognizing the object. This typically happens in a piecemeal fashion, with failures possible at many points. On failure, the bfd is supposed to be restored to its initial state, which is virtually impossible. However, restoring a subset of the bfd state works in practice. This function stores the subset and reinitializes the bfd. bfd_preserve_restore bfd_preserve_restoreSynopsis void bfd_preserve_restore (bfd *, struct bfd_preserve *); Description This function restores bfd state saved by bfd_preserve_save. If MARKER is non-NULL in struct bfd_preserve then that block and all subsequently bfd_alloc'd memory is freed. bfd_preserve_finish bfd_preserve_finishSynopsis void bfd_preserve_finish (bfd *, struct bfd_preserve *); Description This function should be called when the bfd state saved by bfd_preserve_save is no longer needed. ie. when the back-end object_p function returns with success. bfd_emul_get_maxpagesize bfd_emul_get_maxpagesizeSynopsis bfd_vma bfd_emul_get_maxpagesize (const char *); Description Returns the maximum page size, in bytes, as determined by emulation. Returns Returns the maximum page size in bytes for ELF, abort otherwise. bfd_emul_set_maxpagesize bfd_emul_set_maxpagesizeSynopsis void bfd_emul_set_maxpagesize (const char *, bfd_vma); Description For ELF, set the maximum page size for the emulation. It is a no-op for other formats. bfd_emul_get_commonpagesize bfd_emul_get_commonpagesizeSynopsis bfd_vma bfd_emul_get_commonpagesize (const char *); Description Returns the common page size, in bytes, as determined by emulation. Returns Returns the common page size in bytes for ELF, abort otherwise. bfd_emul_set_commonpagesize bfd_emul_set_commonpagesizeSynopsis void bfd_emul_set_commonpagesize (const char *, bfd_vma); Description For ELF, set the common page size for the emulation. It is a no-op for other formats. struct bfd_iovec struct bfd_iovecDescription The struct bfd_iovec contains the internal file I/O class. Each BFD has an instance of this class and all file I/O is routed through it (it is assumed that the instance implements all methods listed below). struct bfd_iovec { /* To avoid problems with macros, a "b" rather than "f" prefix is prepended to each method name. */ /* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetching bytes starting at PTR. Return the number of bytes actually transfered (a read past end-of-file returns less than NBYTES), or -1 (setting bfd_error) if an error occurs. */ file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes); file_ptr (*bwrite) (struct bfd *abfd, const void *ptr, file_ptr nbytes); /* Return the current IOSTREAM file offset, or -1 (setting bfd_error if an error occurs. */ file_ptr (*btell) (struct bfd *abfd); /* For the following, on successful completion a value of 0 is returned. Otherwise, a value of -1 is returned (and bfd_error is set). */ int (*bseek) (struct bfd *abfd, file_ptr offset, int whence); int (*bclose) (struct bfd *abfd); int (*bflush) (struct bfd *abfd); int (*bstat) (struct bfd *abfd, struct stat *sb); }; bfd_get_mtime bfd_get_mtimeSynopsis long bfd_get_mtime (bfd *abfd); Description Return the file modification time (as read from the file system, or from the archive header for archive members). bfd_get_size bfd_get_sizeSynopsis long bfd_get_size (bfd *abfd); Description Return the file size (as read from file system) for the file associated with BFD abfd. The initial motivation for, and use of, this routine is not so we can get the exact size of the object the BFD applies to, since that might not be generally possible (archive members for example). It would be ideal if someone could eventually modify it so that such results were guaranteed. Instead, we want to ask questions like "is this NNN byte sized object I'm about to try read from file offset YYY reasonable?" As as example of where we might do this, some object formats use string tables for which the first sizeof (long) bytes of the table contain the size of the table itself, including the size bytes. If an application tries to read what it thinks is one of these string tables, without some way to validate the size, and for some reason the size is wrong (byte swapping error, wrong location for the string table, etc.), the only clue is likely to be a read error when it tries to read the table, or a "virtual memory exhausted" error when it tries to allocate 15 bazillon bytes of space for the 15 bazillon byte table it is about to read. This function at least allows us to answer the question, "is the size reasonable?". Memory UsageBFD keeps all of its internal structures in obstacks. There is one obstack per open BFD file, into which the current state is stored. When a BFD is closed, the obstack is deleted, and so everything which has been allocated by BFD for the closing file is thrown away. BFD does not free anything created by an application, but pointers into bfd structures become invalid on a bfd_close; for example, after a bfd_close the vector passed to bfd_canonicalize_symtab is still around, since it has been allocated by the application, but the data that it pointed to are lost. The general rule is to not close a BFD until all operations dependent upon data from the BFD have been completed, or all the data from within the file has been copied. To help with the management of memory, there is a function (bfd_alloc_size) which returns the number of bytes in obstacks associated with the supplied BFD. This could be used to select the greediest open BFD, close it to reclaim the memory, perform some operation and reopen the BFD again, to get a fresh copy of the data structures. Initialization Initialization functionsThese are the functions that handle initializing a BFD. bfd_init bfd_initSynopsis void bfd_init (void); Description This routine must be called before any other BFD function to initialize magical internal data structures. SectionsThe raw data contained within a BFD is maintained through the section abstraction. A single BFD may have any number of sections. It keeps hold of them by pointing to the first; each one points to the next in the list. Sections are supported in BFD in section.c. Section inputWhen a BFD is opened for reading, the section structures are created and attached to the BFD. Each section has a name which describes the section in the outside world—for example, a.out would contain at least three sections, called .text, .data and .bss. Names need not be unique; for example a COFF file may have several sections named .data. Sometimes a BFD will contain more than the “natural” number of sections. A back end may attach other sections containing constructor data, or an application may add a section (using bfd_make_section) to the sections attached to an already open BFD. For example, the linker creates an extra section COMMON for each input file's BFD to hold information about common storage. The raw data is not necessarily read in when the section descriptor is created. Some targets may leave the data in place until a bfd_get_section_contents call is made. Other back ends may read in all the data at once. For example, an S-record file has to be read once to determine the size of the data. An IEEE-695 file doesn't contain raw data in sections, but data and relocation expressions intermixed, so the data area has to be parsed to get out the data and relocations. Section outputTo write a new object style BFD, the various sections to be written have to be created. They are attached to the BFD in the same way as input sections; data is written to the sections using bfd_set_section_contents. Any program that creates or combines sections (e.g., the assembler and linker) must use the asection fields output_section and output_offset to indicate the file sections to which each section must be written. (If the section is being created from scratch, output_section should probably point to the section itself and output_offset should probably be zero.) The data to be written comes from input sections attached (via output_section pointers) to the output sections. The output section structure can be considered a filter for the input section: the output section determines the vma of the output data and the name, but the input section determines the offset into the output section of the data to be written. E.g., to create a section "O", starting at 0x100, 0x123 long, containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the asection structures would look like: section name "A" output_offset 0x00 size 0x20 output_section -----------> section name "O" | vma 0x100 section name "B" | size 0x123 output_offset 0x20 | size 0x103 | output_section --------| Link ordersThe data within a section is stored in a link_order. These are much like the fixups in gas. The link_order abstraction allows a section to grow and shrink within itself. A link_order knows how big it is, and which is the next link_order and where the raw data for it is; it also points to a list of relocations which apply to it. The link_order is used by the linker to perform relaxing on final code. The compiler creates code which is as big as necessary to make it work without relaxing, and the user can select whether to relax. Sometimes relaxing takes a lot of time. The linker runs around the relocations to see if any are attached to data which can be shrunk, if so it does it on a link_order by link_order basis. typedef asectionHere is the section structure: typedef struct bfd_section { /* The name of the section; the name isn't a copy, the pointer is the same as that passed to bfd_make_section. */ const char *name; /* A unique sequence number. */ int id; /* Which section in the bfd; 0..n-1 as sections are created in a bfd. */ int index; /* The next section in the list belonging to the BFD, or NULL. */ struct bfd_section *next; /* The previous section in the list belonging to the BFD, or NULL. */ struct bfd_section *prev; /* The field flags contains attributes of the section. Some flags are read in from the object file, and some are synthesized from other information. */ flagword flags; #define SEC_NO_FLAGS 0x000 /* Tells the OS to allocate space for this section when loading. This is clear for a section containing debug information only. */ #define SEC_ALLOC 0x001 /* Tells the OS to load the section from the file when loading. This is clear for a .bss section. */ #define SEC_LOAD 0x002 /* The section contains data still to be relocated, so there is some relocation information too. */ #define SEC_RELOC 0x004 /* A signal to the OS that the section contains read only data. */ #define SEC_READONLY 0x008 /* The section contains code only. */ #define SEC_CODE 0x010 /* The section contains data only. */ #define SEC_DATA 0x020 /* The section will reside in ROM. */ #define SEC_ROM 0x040 /* The section contains constructor information. This section type is used by the linker to create lists of constructors and destructors used by g++. When a back end sees a symbol which should be used in a constructor list, it creates a new section for the type of name (e.g., __CTOR_LIST__), attaches the symbol to it, and builds a relocation. To build the lists of constructors, all the linker has to do is catenate all the sections called __CTOR_LIST__ and relocate the data contained within - exactly the operations it would peform on standard data. */ #define SEC_CONSTRUCTOR 0x080 /* The section has contents - a data section could be SEC_ALLOC | SEC_HAS_CONTENTS; a debug section could be SEC_HAS_CONTENTS */ #define SEC_HAS_CONTENTS 0x100 /* An instruction to the linker to not output the section even if it has information which would normally be written. */ #define SEC_NEVER_LOAD 0x200 /* The section contains thread local data. */ #define SEC_THREAD_LOCAL 0x400 /* The section has GOT references. This flag is only for the linker, and is currently only used by the elf32-hppa back end. It will be set if global offset table references were detected in this section, which indicate to the linker that the section contains PIC code, and must be handled specially when doing a static link. */ #define SEC_HAS_GOT_REF 0x800 /* The section contains common symbols (symbols may be defined multiple times, the value of a symbol is the amount of space it requires, and the largest symbol value is the one used). Most targets have exactly one of these (which we translate to bfd_com_section_ptr), but ECOFF has two. */ #define SEC_IS_COMMON 0x1000 /* The section contains only debugging information. For example, this is set for ELF .debug and .stab sections. strip tests this flag to see if a section can be discarded. */ #define SEC_DEBUGGING 0x2000 /* The contents of this section are held in memory pointed to by the contents field. This is checked by bfd_get_section_contents, and the data is retrieved from memory if appropriate. */ #define SEC_IN_MEMORY 0x4000 /* The contents of this section are to be excluded by the linker for executable and shared objects unless those objects are to be further relocated. */ #define SEC_EXCLUDE 0x8000 /* The contents of this section are to be sorted based on the sum of the symbol and addend values specified by the associated relocation entries. Entries without associated relocation entries will be appended to the end of the section in an unspecified order. */ #define SEC_SORT_ENTRIES 0x10000 /* When linking, duplicate sections of the same name should be discarded, rather than being combined into a single section as is usually done. This is similar to how common symbols are handled. See SEC_LINK_DUPLICATES below. */ #define SEC_LINK_ONCE 0x20000 /* If SEC_LINK_ONCE is set, this bitfield describes how the linker should handle duplicate sections. */ #define SEC_LINK_DUPLICATES 0x40000 /* This value for SEC_LINK_DUPLICATES means that duplicate sections with the same name should simply be discarded. */ #define SEC_LINK_DUPLICATES_DISCARD 0x0 /* This value for SEC_LINK_DUPLICATES means that the linker should warn if there are any duplicate sections, although it should still only link one copy. */ #define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000 /* This value for SEC_LINK_DUPLICATES means that the linker should warn if any duplicate sections are a different size. */ #define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000 /* This value for SEC_LINK_DUPLICATES means that the linker should warn if any duplicate sections contain different contents. */ #define SEC_LINK_DUPLICATES_SAME_CONTENTS \ (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) /* This section was created by the linker as part of dynamic relocation or other arcane processing. It is skipped when going through the first-pass output, trusting that someone else up the line will take care of it later. */ #define SEC_LINKER_CREATED 0x200000 /* This section should not be subject to garbage collection. Also set to inform the linker that this section should not be listed in the link map as discarded. */ #define SEC_KEEP 0x400000 /* This section contains "short" data, and should be placed "near" the GP. */ #define SEC_SMALL_DATA 0x800000 /* Attempt to merge identical entities in the section. Entity size is given in the entsize field. */ #define SEC_MERGE 0x1000000 /* If given with SEC_MERGE, entities to merge are zero terminated strings where entsize specifies character size instead of fixed size entries. */ #define SEC_STRINGS 0x2000000 /* This section contains data about section groups. */ #define SEC_GROUP 0x4000000 /* The section is a COFF shared library section. This flag is only for the linker. If this type of section appears in the input file, the linker must copy it to the output file without changing the vma or size. FIXME: Although this was originally intended to be general, it really is COFF specific (and the flag was renamed to indicate this). It might be cleaner to have some more general mechanism to allow the back end to control what the linker does with sections. */ #define SEC_COFF_SHARED_LIBRARY 0x10000000 /* This section contains data which may be shared with other executables or shared objects. This is for COFF only. */ #define SEC_COFF_SHARED 0x20000000 /* When a section with this flag is being linked, then if the size of the input section is less than a page, it should not cross a page boundary. If the size of the input section is one page or more, it should be aligned on a page boundary. This is for TI TMS320C54X only. */ #define SEC_TIC54X_BLOCK 0x40000000 /* Conditionally link this section; do not link if there are no references found to any symbol in the section. This is for TI TMS320C54X only. */ #define SEC_TIC54X_CLINK 0x80000000 /* End of section flags. */ /* Some internal packed boolean fields. */ /* See the vma field. */ unsigned int user_set_vma : 1; /* A mark flag used by some of the linker backends. */ unsigned int linker_mark : 1; /* Another mark flag used by some of the linker backends. Set for output sections that have an input section. */ unsigned int linker_has_input : 1; /* Mark flags used by some linker backends for garbage collection. */ unsigned int gc_mark : 1; unsigned int gc_mark_from_eh : 1; /* The following flags are used by the ELF linker. */ /* Mark sections which have been allocated to segments. */ unsigned int segment_mark : 1; /* Type of sec_info information. */ unsigned int sec_info_type:3; #define ELF_INFO_TYPE_NONE 0 #define ELF_INFO_TYPE_STABS 1 #define ELF_INFO_TYPE_MERGE 2 #define ELF_INFO_TYPE_EH_FRAME 3 #define ELF_INFO_TYPE_JUST_SYMS 4 /* Nonzero if this section uses RELA relocations, rather than REL. */ unsigned int use_rela_p:1; /* Bits used by various backends. The generic code doesn't touch these fields. */ /* Nonzero if this section has TLS related relocations. */ unsigned int has_tls_reloc:1; /* Nonzero if this section has a gp reloc. */ unsigned int has_gp_reloc:1; /* Nonzero if this section needs the relax finalize pass. */ unsigned int need_finalize_relax:1; /* Whether relocations have been processed. */ unsigned int reloc_done : 1; /* End of internal packed boolean fields. */ /* The virtual memory address of the section - where it will be at run time. The symbols are relocated against this. The user_set_vma flag is maintained by bfd; if it's not set, the backend can assign addresses (for example, in a.out, where the default address for .data is dependent on the specific target and various flags). */ bfd_vma vma; /* The load address of the section - where it would be in a rom image; really only used for writing section header information. */ bfd_vma lma; /* The size of the section in octets, as it will be output. Contains a value even if the section has no contents (e.g., the size of .bss). */ bfd_size_type size; /* For input sections, the original size on disk of the section, in octets. This field is used by the linker relaxation code. It is currently only set for sections where the linker relaxation scheme doesn't cache altered section and reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing targets), and thus the original size needs to be kept to read the section multiple times. For output sections, rawsize holds the section size calculated on a previous linker relaxation pass. */ bfd_size_type rawsize; /* If this section is going to be output, then this value is the offset in *bytes* into the output section of the first byte in the input section (byte ==> smallest addressable unit on the target). In most cases, if this was going to start at the 100th octet (8-bit quantity) in the output section, this value would be 100. However, if the target byte size is 16 bits (bfd_octets_per_byte is "2"), this value would be 50. */ bfd_vma output_offset; /* The output section through which to map on output. */ struct bfd_section *output_section; /* The alignment requirement of the section, as an exponent of 2 - e.g., 3 aligns to 2^3 (or 8). */ unsigned int alignment_power; /* If an input section, a pointer to a vector of relocation records for the data in this section. */ struct reloc_cache_entry *relocation; /* If an output section, a pointer to a vector of pointers to relocation records for the data in this section. */ struct reloc_cache_entry **orelocation; /* The number of relocation records in one of the above. */ unsigned reloc_count; /* Information below is back end specific - and not always used or updated. */ /* File position of section data. */ file_ptr filepos; /* File position of relocation info. */ file_ptr rel_filepos; /* File position of line data. */ file_ptr line_filepos; /* Pointer to data for applications. */ void *userdata; /* If the SEC_IN_MEMORY flag is set, this points to the actual contents. */ unsigned char *contents; /* Attached line number information. */ alent *lineno; /* Number of line number records. */ unsigned int lineno_count; /* Entity size for merging purposes. */ unsigned int entsize; /* Points to the kept section if this section is a link-once section, and is discarded. */ struct bfd_section *kept_section; /* When a section is being output, this value changes as more linenumbers are written out. */ file_ptr moving_line_filepos; /* What the section number is in the target world. */ int target_index; void *used_by_bfd; /* If this is a constructor section then here is a list of the relocations created to relocate items within it. */ struct relent_chain *constructor_chain; /* The BFD which owns the section. */ bfd *owner; /* A symbol which points at this section only. */ struct bfd_symbol *symbol; struct bfd_symbol **symbol_ptr_ptr; /* Early in the link process, map_head and map_tail are used to build a list of input sections attached to an output section. Later, output sections use these fields for a list of bfd_link_order structs. */ union { struct bfd_link_order *link_order; struct bfd_section *s; } map_head, map_tail; } asection; /* These sections are global, and are managed by BFD. The application and target back end are not permitted to change the values in these sections. New code should use the section_ptr macros rather than referring directly to the const sections. The const sections may eventually vanish. */ #define BFD_ABS_SECTION_NAME "*ABS*" #define BFD_UND_SECTION_NAME "*UND*" #define BFD_COM_SECTION_NAME "*COM*" #define BFD_IND_SECTION_NAME "*IND*" /* The absolute section. */ extern asection bfd_abs_section; #define bfd_abs_section_ptr ((asection *) &bfd_abs_section) #define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) /* Pointer to the undefined section. */ extern asection bfd_und_section; #define bfd_und_section_ptr ((asection *) &bfd_und_section) #define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) /* Pointer to the common section. */ extern asection bfd_com_section; #define bfd_com_section_ptr ((asection *) &bfd_com_section) /* Pointer to the indirect section. */ extern asection bfd_ind_section; #define bfd_ind_section_ptr ((asection *) &bfd_ind_section) #define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) #define bfd_is_const_section(SEC) \ ( ((SEC) == bfd_abs_section_ptr) \ || ((SEC) == bfd_und_section_ptr) \ || ((SEC) == bfd_com_section_ptr) \ || ((SEC) == bfd_ind_section_ptr)) /* Macros to handle insertion and deletion of a bfd's sections. These only handle the list pointers, ie. do not adjust section_count, target_index etc. */ #define bfd_section_list_remove(ABFD, S) \ do \ { \ asection *_s = S; \ asection *_next = _s->next; \ asection *_prev = _s->prev; \ if (_prev) \ _prev->next = _next; \ else \ (ABFD)->sections = _next; \ if (_next) \ _next->prev = _prev; \ else \ (ABFD)->section_last = _prev; \ } \ while (0) #define bfd_section_list_append(ABFD, S) \ do \ { \ asection *_s = S; \ bfd *_abfd = ABFD; \ _s->next = NULL; \ if (_abfd->section_last) \ { \ _s->prev = _abfd->section_last; \ _abfd->section_last->next = _s; \ } \ else \ { \ _s->prev = NULL; \ _abfd->sections = _s; \ } \ _abfd->section_last = _s; \ } \ while (0) #define bfd_section_list_prepend(ABFD, S) \ do \ { \ asection *_s = S; \ bfd *_abfd = ABFD; \ _s->prev = NULL; \ if (_abfd->sections) \ { \ _s->next = _abfd->sections; \ _abfd->sections->prev = _s; \ } \ else \ { \ _s->next = NULL; \ _abfd->section_last = _s; \ } \ _abfd->sections = _s; \ } \ while (0) #define bfd_section_list_insert_after(ABFD, A, S) \ do \ { \ asection *_a = A; \ asection *_s = S; \ asection *_next = _a->next; \ _s->next = _next; \ _s->prev = _a; \ _a->next = _s; \ if (_next) \ _next->prev = _s; \ else \ (ABFD)->section_last = _s; \ } \ while (0) #define bfd_section_list_insert_before(ABFD, B, S) \ do \ { \ asection *_b = B; \ asection *_s = S; \ asection *_prev = _b->prev; \ _s->prev = _prev; \ _s->next = _b; \ _b->prev = _s; \ if (_prev) \ _prev->next = _s; \ else \ (ABFD)->sections = _s; \ } \ while (0) #define bfd_section_removed_from_list(ABFD, S) \ ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) #define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \ /* name, id, index, next, prev, flags, user_set_vma, */ \ { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ \ /* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh, */ \ 0, 0, 1, 0, \ \ /* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, */ \ 0, 0, 0, 0, \ \ /* has_gp_reloc, need_finalize_relax, reloc_done, */ \ 0, 0, 0, \ \ /* vma, lma, size, rawsize */ \ 0, 0, 0, 0, \ \ /* output_offset, output_section, alignment_power, */ \ 0, (struct bfd_section *) &SEC, 0, \ \ /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \ NULL, NULL, 0, 0, 0, \ \ /* line_filepos, userdata, contents, lineno, lineno_count, */ \ 0, NULL, NULL, NULL, 0, \ \ /* entsize, kept_section, moving_line_filepos, */ \ 0, NULL, 0, \ \ /* target_index, used_by_bfd, constructor_chain, owner, */ \ 0, NULL, NULL, NULL, \ \ /* symbol, symbol_ptr_ptr, */ \ (struct bfd_symbol *) SYM, &SEC.symbol, \ \ /* map_head, map_tail */ \ { NULL }, { NULL } \ } Section prototypesThese are the functions exported by the section handling part of BFD. bfd_section_list_clear bfd_section_list_clearSynopsis void bfd_section_list_clear (bfd *); Description Clears the section list, and also resets the section count and hash table entries. bfd_get_section_by_name bfd_get_section_by_nameSynopsis asection *bfd_get_section_by_name (bfd *abfd, const char *name); Description Run through abfd and return the one of the asections whose name matches name, otherwise NULL. See , for more information. This should only be used in special cases; the normal way to process all sections of a given name is to use bfd_map_over_sections and strcmp on the name (or better yet, base it on the section flags or something else) for each section. bfd_get_section_by_name_if bfd_get_section_by_name_ifSynopsis asection *bfd_get_section_by_name_if (bfd *abfd, const char *name, bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), void *obj); Description Call the provided function func for each section attached to the BFD abfd whose name matches name, passing obj as an argument. The function will be called as if by func (abfd, the_section, obj); It returns the first section for which func returns true, otherwise NULL. bfd_get_unique_section_name bfd_get_unique_section_nameSynopsis char *bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count); Description Invent a section name that is unique in abfd by tacking a dot and a digit suffix onto the original templat. If count is non-NULL, then it specifies the first number tried as a suffix to generate a unique name. The value pointed to by count will be incremented in this case. bfd_make_section_old_way bfd_make_section_old_waySynopsis asection *bfd_make_section_old_way (bfd *abfd, const char *name); Description Create a new empty section called name and attach it to the end of the chain of sections for the BFD abfd. An attempt to create a section with a name which is already in use returns its pointer without changing the section chain. It has the funny name since this is the way it used to be before it was rewritten.... Possible errors are: bfd_error_invalid_operation -If output has already started for this BFD. bfd_error_no_memory -If memory allocation fails. bfd_make_section_anyway_with_flags bfd_make_section_anyway_with_flagsSynopsis asection *bfd_make_section_anyway_with_flags (bfd *abfd, const char *name, flagword flags); Description Create a new empty section called name and attach it to the end of the chain of sections for abfd. Create a new section even if there is already a section with that name. Also set the attributes of the new section to the value flags. Return NULL and set bfd_error on error; possible errors are: bfd_error_invalid_operation - If output has already started for abfd. bfd_error_no_memory - If memory allocation fails. bfd_make_section_anyway bfd_make_section_anywaySynopsis asection *bfd_make_section_anyway (bfd *abfd, const char *name); Description Create a new empty section called name and attach it to the end of the chain of sections for abfd. Create a new section even if there is already a section with that name. Return NULL and set bfd_error on error; possible errors are: bfd_error_invalid_operation - If output has already started for abfd. bfd_error_no_memory - If memory allocation fails. bfd_make_section_with_flags bfd_make_section_with_flagsSynopsis asection *bfd_make_section_with_flags (bfd *, const char *name, flagword flags); Description Like bfd_make_section_anyway, but return NULL (without calling bfd_set_error ()) without changing the section chain if there is already a section named name. Also set the attributes of the new section to the value flags. If there is an error, return NULL and set bfd_error. bfd_make_section bfd_make_sectionSynopsis asection *bfd_make_section (bfd *, const char *name); Description Like bfd_make_section_anyway, but return NULL (without calling bfd_set_error ()) without changing the section chain if there is already a section named name. If there is an error, return NULL and set bfd_error. bfd_set_section_flags bfd_set_section_flagsSynopsis bfd_boolean bfd_set_section_flags (bfd *abfd, asection *sec, flagword flags); Description Set the attributes of the section sec in the BFD abfd to the value flags. Return TRUE on success, FALSE on error. Possible error returns are: bfd_error_invalid_operation -The section cannot have one or more of the attributesrequested. For example, a .bss section in a.out may nothave the SEC_HAS_CONTENTS field set. bfd_map_over_sections bfd_map_over_sectionsSynopsis void bfd_map_over_sections (bfd *abfd, void (*func) (bfd *abfd, asection *sect, void *obj), void *obj); Description Call the provided function func for each section attached to the BFD abfd, passing obj as an argument. The function will be called as if by func (abfd, the_section, obj); This is the preferred method for iterating over sections; an alternative would be to use a loop: section *p; for (p = abfd->sections; p != NULL; p = p->next) func (abfd, p, ...) bfd_sections_find_if bfd_sections_find_ifSynopsis asection *bfd_sections_find_if (bfd *abfd, bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), void *obj); Description Call the provided function operation for each section attached to the BFD abfd, passing obj as an argument. The function will be called as if by operation (abfd, the_section, obj); It returns the first section for which operation returns true. bfd_set_section_size bfd_set_section_sizeSynopsis bfd_boolean bfd_set_section_size (bfd *abfd, asection *sec, bfd_size_type val); Description Set sec to the size val. If the operation is ok, then TRUE is returned, else FALSE. Possible error returns: bfd_error_invalid_operation -Writing has started to the BFD, so setting the size is invalid. bfd_set_section_contents bfd_set_section_contentsSynopsis bfd_boolean bfd_set_section_contents (bfd *abfd, asection *section, const void *data, file_ptr offset, bfd_size_type count); Description Sets the contents of the section section in BFD abfd to the data starting in memory at data. The data is written to the output section starting at offset offset for count octets. Normally TRUE is returned, else FALSE. Possible error returns are: bfd_error_no_contents -The output section does not have the SEC_HAS_CONTENTSattribute, so nothing can be written to it. and some more too This routine is front end to the back end function _bfd_set_section_contents. bfd_get_section_contents bfd_get_section_contentsSynopsis bfd_boolean bfd_get_section_contents (bfd *abfd, asection *section, void *location, file_ptr offset, bfd_size_type count); Description Read data from section in BFD abfd into memory starting at location. The data is read at an offset of offset from the start of the input section, and is read for count bytes. If the contents of a constructor with the SEC_CONSTRUCTOR flag set are requested or if the section does not have the SEC_HAS_CONTENTS flag set, then the location is filled with zeroes. If no errors occur, TRUE is returned, else FALSE. bfd_malloc_and_get_section bfd_malloc_and_get_sectionSynopsis bfd_boolean bfd_malloc_and_get_section (bfd *abfd, asection *section, bfd_byte **buf); Description Read all data from section in BFD abfd into a buffer, *buf, malloc'd by this function. bfd_copy_private_section_data bfd_copy_private_section_dataSynopsis bfd_boolean bfd_copy_private_section_data (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); Description Copy private section information from isec in the BFD ibfd to the section osec in the BFD obfd. Return TRUE on success, FALSE on error. Possible error returns are: bfd_error_no_memory -Not enough memory exists to create private data for osec. #define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ BFD_SEND (obfd, _bfd_copy_private_section_data, \ (ibfd, isection, obfd, osection)) bfd_generic_is_group_section bfd_generic_is_group_sectionSynopsis bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); Description Returns TRUE if sec is a member of a group. bfd_generic_discard_group bfd_generic_discard_groupSynopsis bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); Description Remove all members of group from the output. SymbolsBFD tries to maintain as much symbol information as it can when it moves information from file to file. BFD passes information to applications though the asymbol structure. When the application requests the symbol table, BFD reads the table in the native form and translates parts of it into the internal format. To maintain more than the information passed to applications, some targets keep some information “behind the scenes” in a structure only the particular back end knows about. For example, the coff back end keeps the original symbol table structure as well as the canonical structure when a BFD is read in. On output, the coff back end can reconstruct the output symbol table so that no information is lost, even information unique to coff which BFD doesn't know or understand. If a coff symbol table were read, but were written through an a.out back end, all the coff specific information would be lost. The symbol table of a BFD is not necessarily read in until a canonicalize request is made. Then the BFD back end fills in a table provided by the application with pointers to the canonical information. To output symbols, the application provides BFD with a table of pointers to pointers to asymbols. This allows applications like the linker to output a symbol as it was read, since the “behind the scenes” information will be still available. Reading symbolsThere are two stages to reading a symbol table from a BFD: allocating storage, and the actual reading process. This is an excerpt from an application which reads the symbol table: long storage_needed; asymbol **symbol_table; long number_of_symbols; long i; storage_needed = bfd_get_symtab_upper_bound (abfd); if (storage_needed < 0) FAIL if (storage_needed == 0) return; symbol_table = xmalloc (storage_needed); ... number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); if (number_of_symbols < 0) FAIL for (i = 0; i < number_of_symbols; i++) process_symbol (symbol_table[i]); All storage for the symbols themselves is in an objalloc connected to the BFD; it is freed when the BFD is closed. Writing symbolsWriting of a symbol table is automatic when a BFD open for writing is closed. The application attaches a vector of pointers to pointers to symbols to the BFD being written, and fills in the symbol count. The close and cleanup code reads through the table provided and performs all the necessary operations. The BFD output code must always be provided with an “owned” symbol: one which has come from another BFD, or one which has been created using bfd_make_empty_symbol. Here is an example showing the creation of a symbol table with only one element: #include "bfd.h" int main (void) { bfd *abfd; asymbol *ptrs[2]; asymbol *new; abfd = bfd_openw ("foo","a.out-sunos-big"); bfd_set_format (abfd, bfd_object); new = bfd_make_empty_symbol (abfd); new->name = "dummy_symbol"; new->section = bfd_make_section_old_way (abfd, ".text"); new->flags = BSF_GLOBAL; new->value = 0x12345; ptrs[0] = new; ptrs[1] = 0; bfd_set_symtab (abfd, ptrs, 1); bfd_close (abfd); return 0; } ./makesym nm foo 00012345 A dummy_symbol Many formats cannot represent arbitrary symbol information; for instance, the a.out object format does not allow an arbitrary number of sections. A symbol pointing to a section which is not one of .text, .data or .bss cannot be described. Mini SymbolsMini symbols provide read-only access to the symbol table. They use less memory space, but require more time to access. They can be useful for tools like nm or objdump, which may have to handle symbol tables of extremely large executables. The bfd_read_minisymbols function will read the symbols into memory in an internal form. It will return a void * pointer to a block of memory, a symbol count, and the size of each symbol. The pointer is allocated using malloc, and should be freed by the caller when it is no longer needed. The function bfd_minisymbol_to_symbol will take a pointer to a minisymbol, and a pointer to a structure returned by bfd_make_empty_symbol, and return a asymbol structure. The return value may or may not be the same as the value from bfd_make_empty_symbol which was passed in. typedef asymbolAn asymbol has the form: typedef struct bfd_symbol { /* A pointer to the BFD which owns the symbol. This information is necessary so that a back end can work out what additional information (invisible to the application writer) is carried with the symbol. This field is *almost* redundant, since you can use section->owner instead, except that some symbols point to the global sections bfd_{abs,com,und}_section. This could be fixed by making these globals be per-bfd (or per-target-flavor). FIXME. */ struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */ /* The text of the symbol. The name is left alone, and not copied; the application may not alter it. */ const char *name; /* The value of the symbol. This really should be a union of a numeric value with a pointer, since some flags indicate that a pointer to another symbol is stored here. */ symvalue value; /* Attributes of a symbol. */ #define BSF_NO_FLAGS 0x00 /* The symbol has local scope; static in C. The value is the offset into the section of the data. */ #define BSF_LOCAL 0x01 /* The symbol has global scope; initialized data in C. The value is the offset into the section of the data. */ #define BSF_GLOBAL 0x02 /* The symbol has global scope and is exported. The value is the offset into the section of the data. */ #define BSF_EXPORT BSF_GLOBAL /* No real difference. */ /* A normal C symbol would be one of: BSF_LOCAL, BSF_FORT_COMM, BSF_UNDEFINED or BSF_GLOBAL. */ /* The symbol is a debugging record. The value has an arbitrary meaning, unless BSF_DEBUGGING_RELOC is also set. */ #define BSF_DEBUGGING 0x08 /* The symbol denotes a function entry point. Used in ELF, perhaps others someday. */ #define BSF_FUNCTION 0x10 /* Used by the linker. */ #define BSF_KEEP 0x20 #define BSF_KEEP_G 0x40 /* A weak global symbol, overridable without warnings by a regular global symbol of the same name. */ #define BSF_WEAK 0x80 /* This symbol was created to point to a section, e.g. ELF's STT_SECTION symbols. */ #define BSF_SECTION_SYM 0x100 /* The symbol used to be a common symbol, but now it is allocated. */ #define BSF_OLD_COMMON 0x200 /* The default value for common data. */ #define BFD_FORT_COMM_DEFAULT_VALUE 0 /* In some files the type of a symbol sometimes alters its location in an output file - ie in coff a ISFCN symbol which is also C_EXT symbol appears where it was declared and not at the end of a section. This bit is set by the target BFD part to convey this information. */ #define BSF_NOT_AT_END 0x400 /* Signal that the symbol is the label of constructor section. */ #define BSF_CONSTRUCTOR 0x800 /* Signal that the symbol is a warning symbol. The name is a warning. The name of the next symbol is the one to warn about; if a reference is made to a symbol with the same name as the next symbol, a warning is issued by the linker. */ #define BSF_WARNING 0x1000 /* Signal that the symbol is indirect. This symbol is an indirect pointer to the symbol with the same name as the next symbol. */ #define BSF_INDIRECT 0x2000 /* BSF_FILE marks symbols that contain a file name. This is used for ELF STT_FILE symbols. */ #define BSF_FILE 0x4000 /* Symbol is from dynamic linking information. */ #define BSF_DYNAMIC 0x8000 /* The symbol denotes a data object. Used in ELF, and perhaps others someday. */ #define BSF_OBJECT 0x10000 /* This symbol is a debugging symbol. The value is the offset into the section of the data. BSF_DEBUGGING should be set as well. */ #define BSF_DEBUGGING_RELOC 0x20000 /* This symbol is thread local. Used in ELF. */ #define BSF_THREAD_LOCAL 0x40000 flagword flags; /* A pointer to the section to which this symbol is relative. This will always be non NULL, there are special sections for undefined and absolute symbols. */ struct bfd_section *section; /* Back end special data. */ union { void *p; bfd_vma i; } udata; } asymbol; Symbol handling functions bfd_get_symtab_upper_bound bfd_get_symtab_upper_boundDescription Return the number of bytes required to store a vector of pointers to asymbols for all the symbols in the BFD abfd, including a terminal NULL pointer. If there are no symbols in the BFD, then return 0. If an error occurs, return -1. #define bfd_get_symtab_upper_bound(abfd) \ BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd)) bfd_is_local_label bfd_is_local_labelSynopsis bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym); Description Return TRUE if the given symbol sym in the BFD abfd is a compiler generated local label, else return FALSE. bfd_is_local_label_name bfd_is_local_label_nameSynopsis bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name); Description Return TRUE if a symbol with the name name in the BFD abfd is a compiler generated local label, else return FALSE. This just checks whether the name has the form of a local label. #define bfd_is_local_label_name(abfd, name) \ BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name)) bfd_is_target_special_symbol bfd_is_target_special_symbolSynopsis bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym); Description Return TRUE iff a symbol sym in the BFD abfd is something special to the particular target represented by the BFD. Such symbols should normally not be mentioned to the user. #define bfd_is_target_special_symbol(abfd, sym) \ BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym)) bfd_canonicalize_symtab bfd_canonicalize_symtabDescription Read the symbols from the BFD abfd, and fills in the vector location with pointers to the symbols and a trailing NULL. Return the actual number of symbol pointers, not including the NULL. #define bfd_canonicalize_symtab(abfd, location) \ BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location)) bfd_set_symtab bfd_set_symtabSynopsis bfd_boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count); Description Arrange that when the output BFD abfd is closed, the table location of count pointers to symbols will be written. bfd_print_symbol_vandf bfd_print_symbol_vandfSynopsis void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol); Description Print the value and flags of the symbol supplied to the stream file. bfd_make_empty_symbol bfd_make_empty_symbolDescription Create a new asymbol structure for the BFD abfd and return a pointer to it. This routine is necessary because each back end has private information surrounding the asymbol. Building your own asymbol and pointing to it will not create the private information, and will cause problems later on. #define bfd_make_empty_symbol(abfd) \ BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd)) _bfd_generic_make_empty_symbol _bfd_generic_make_empty_symbolSynopsis asymbol *_bfd_generic_make_empty_symbol (bfd *); Description Create a new asymbol structure for the BFD abfd and return a pointer to it. Used by core file routines, binary back-end and anywhere else where no private info is needed. bfd_make_debug_symbol bfd_make_debug_symbolDescription Create a new asymbol structure for the BFD abfd, to be used as a debugging symbol. Further details of its use have yet to be worked out. #define bfd_make_debug_symbol(abfd,ptr,size) \ BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size)) bfd_decode_symclass bfd_decode_symclassDescription Return a character corresponding to the symbol class of symbol, or '?' for an unknown class. Synopsis int bfd_decode_symclass (asymbol *symbol); bfd_is_undefined_symclass bfd_is_undefined_symclassDescription Returns non-zero if the class symbol returned by bfd_decode_symclass represents an undefined symbol. Returns zero otherwise. Synopsis bfd_boolean bfd_is_undefined_symclass (int symclass); bfd_symbol_info bfd_symbol_infoDescription Fill in the basic info about symbol that nm needs. Additional info may be added by the back-ends after calling this function. Synopsis void bfd_symbol_info (asymbol *symbol, symbol_info *ret); bfd_copy_private_symbol_data bfd_copy_private_symbol_dataSynopsis bfd_boolean bfd_copy_private_symbol_data (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym); Description Copy private symbol information from isym in the BFD ibfd to the symbol osym in the BFD obfd. Return TRUE on success, FALSE on error. Possible error returns are: bfd_error_no_memory -Not enough memory exists to create private data for osec. #define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \ BFD_SEND (obfd, _bfd_copy_private_symbol_data, \ (ibfd, isymbol, obfd, osymbol)) Archives Description An archive (or library) is just another BFD. It has a symbol table, although there's not much a user program will do with it. The big difference between an archive BFD and an ordinary BFD is that the archive doesn't have sections. Instead it has a chain of BFDs that are considered its contents. These BFDs can be manipulated like any other. The BFDs contained in an archive opened for reading will all be opened for reading. You may put either input or output BFDs into an archive opened for output; they will be handled correctly when the archive is closed. Use bfd_openr_next_archived_file to step through the contents of an archive opened for input. You don't have to read the entire archive if you don't want to! Read it until you find what you want. Archive contents of output BFDs are chained through the next pointer in a BFD. The first one is findable through the archive_head slot of the archive. Set it with bfd_set_archive_head (q.v.). A given BFD may be in only one open output archive at a time. As expected, the BFD archive code is more general than the archive code of any given environment. BFD archives may contain files of different formats (e.g., a.out and coff) and even different architectures. You may even place archives recursively into archives! This can cause unexpected confusion, since some archive formats are more expressive than others. For instance, Intel COFF archives can preserve long filenames; SunOS a.out archives cannot. If you move a file from the first to the second format and back again, the filename may be truncated. Likewise, different a.out environments have different conventions as to how they truncate filenames, whether they preserve directory names in filenames, etc. When interoperating with native tools, be sure your files are homogeneous. Beware: most of these formats do not react well to the presence of spaces in filenames. We do the best we can, but can't always handle this case due to restrictions in the format of archives. Many Unix utilities are braindead in regards to spaces and such in filenames anyway, so this shouldn't be much of a restriction. Archives are supported in BFD in archive.c. Archive functions bfd_get_next_mapent bfd_get_next_mapentSynopsis symindex bfd_get_next_mapent (bfd *abfd, symindex previous, carsym **sym); Description Step through archive abfd's symbol table (if it has one). Successively update sym with the next symbol's information, returning that symbol's (internal) index into the symbol table. Supply BFD_NO_MORE_SYMBOLS as the previous entry to get the first one; returns BFD_NO_MORE_SYMBOLS when you've already got the last one. A carsym is a canonical archive symbol. The only user-visible element is its name, a null-terminated string. bfd_set_archive_head bfd_set_archive_headSynopsis bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head); Description Set the head of the chain of BFDs contained in the archive output to new_head. bfd_openr_next_archived_file bfd_openr_next_archived_fileSynopsis bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous); Description Provided a BFD, archive, containing an archive and NULL, open an input BFD on the first contained element and returns that. Subsequent calls should pass the archive and the previous return value to return a created BFD to the next contained element. NULL is returned when there are no more. File formatsA format is a BFD concept of high level file contents type. The formats supported by BFD are: bfd_object The BFD may contain data, symbols, relocations and debug info. bfd_archive The BFD contains other BFDs and an optional index. bfd_core The BFD contains the result of an executable core dump. File format functions bfd_check_format bfd_check_formatSynopsis bfd_boolean bfd_check_format (bfd *abfd, bfd_format format); Description Verify if the file attached to the BFD abfd is compatible with the format format (i.e., one of bfd_object, bfd_archive or bfd_core). If the BFD has been set to a specific target before the call, only the named target and format combination is checked. If the target has not been set, or has been set to default, then all the known target backends is interrogated to determine a match. If the default target matches, it is used. If not, exactly one target must recognize the file, or an error results. The function returns TRUE on success, otherwise FALSE with one of the following error codes: bfd_error_invalid_operation -if format is not one of bfd_object, bfd_archive orbfd_core. bfd_error_system_call -if an error occured during a read - even some file mismatchescan cause bfd_error_system_calls. file_not_recognised -none of the backends recognised the file format. bfd_error_file_ambiguously_recognized -more than one backend recognised the file format. bfd_check_format_matches bfd_check_format_matchesSynopsis bfd_boolean bfd_check_format_matches (bfd *abfd, bfd_format format, char ***matching); Description Like bfd_check_format, except when it returns FALSE with bfd_errno set to bfd_error_file_ambiguously_recognized. In that case, if matching is not NULL, it will be filled in with a NULL-terminated list of the names of the formats that matched, allocated with malloc. Then the user may choose a format and try again. When done with the list that matching points to, the caller should free it. bfd_set_format bfd_set_formatSynopsis bfd_boolean bfd_set_format (bfd *abfd, bfd_format format); Description This function sets the file format of the BFD abfd to the format format. If the target set in the BFD does not support the format requested, the format is invalid, or the BFD is not open for writing, then an error occurs. bfd_format_string bfd_format_stringSynopsis const char *bfd_format_string (bfd_format format); Description Return a pointer to a const string invalid, object, archive, core, or unknown, depending upon the value of format. RelocationsBFD maintains relocations in much the same way it maintains symbols: they are left alone until required, then read in en-masse and translated into an internal form. A common routine bfd_perform_relocation acts upon the canonical form to do the fixup. Relocations are maintained on a per section basis, while symbols are maintained on a per BFD basis. All that a back end has to do to fit the BFD interface is to create a struct reloc_cache_entry for each relocation in a particular section, and fill in the right bits of the structures. typedef arelentThis is the structure of a relocation entry: typedef enum bfd_reloc_status { /* No errors detected. */ bfd_reloc_ok, /* The relocation was performed, but there was an overflow. */ bfd_reloc_overflow, /* The address to relocate was not within the section supplied. */ bfd_reloc_outofrange, /* Used by special functions. */ bfd_reloc_continue, /* Unsupported relocation size requested. */ bfd_reloc_notsupported, /* Unused. */ bfd_reloc_other, /* The symbol to relocate against was undefined. */ bfd_reloc_undefined, /* The relocation was performed, but may not be ok - presently generated only when linking i960 coff files with i960 b.out symbols. If this type is returned, the error_message argument to bfd_perform_relocation will be set. */ bfd_reloc_dangerous } bfd_reloc_status_type; typedef struct reloc_cache_entry { /* A pointer into the canonical table of pointers. */ struct bfd_symbol **sym_ptr_ptr; /* offset in section. */ bfd_size_type address; /* addend for relocation value. */ bfd_vma addend; /* Pointer to how to perform the required relocation. */ reloc_howto_type *howto; } arelent; Description Here is a description of each of the fields within an arelent: sym_ptr_ptr The symbol table pointer points to a pointer to the symbol associated with the relocation request. It is the pointer into the table returned by the back end's canonicalize_symtab action. See . The symbol is referenced through a pointer to a pointer so that tools like the linker can fix up all the symbols of the same name by modifying only one pointer. The relocation routine looks in the symbol and uses the base of the section the symbol is attached to and the value of the symbol as the initial relocation offset. If the symbol pointer is zero, then the section provided is looked up. address The address field gives the offset in bytes from the base of the section data which owns the relocation record to the first byte of relocatable information. The actual data relocated will be relative to this point; for example, a relocation type which modifies the bottom two bytes of a four byte word would not touch the first byte pointed to in a big endian world. addend The addend is a value provided by the back end to be added (!) to the relocation offset. Its interpretation is dependent upon the howto. For example, on the 68k the code: char foo[]; main() { return foo[0x12345678]; } Could be compiled into: linkw fp,#-4 moveb @#12345678,d0 extbl d0 unlk fp rts This could create a reloc pointing to foo, but leave the offset in the data, something like: RELOCATION RECORDS FOR [.text]: offset type value 00000006 32 _foo 00000000 4e56 fffc ; linkw fp,#-4 00000004 1039 1234 5678 ; moveb @#12345678,d0 0000000a 49c0 ; extbl d0 0000000c 4e5e ; unlk fp 0000000e 4e75 ; rts Using coff and an 88k, some instructions don't have enough space in them to represent the full address range, and pointers have to be loaded in two parts. So you'd get something like: or.u r13,r0,hi16(_foo+0x12345678) ld.b r2,r13,lo16(_foo+0x12345678) jmp r1 This should create two relocs, both pointing to _foo, and with 0x12340000 in their addend field. The data would consist of: RELOCATION RECORDS FOR [.text]: offset type value 00000002 HVRT16 _foo+0x12340000 00000006 LVRT16 _foo+0x12340000 00000000 5da05678 ; or.u r13,r0,0x5678 00000004 1c4d5678 ; ld.b r2,r13,0x5678 00000008 f400c001 ; jmp r1 The relocation routine digs out the value from the data, adds it to the addend to get the original offset, and then adds the value of _foo. Note that all 32 bits have to be kept around somewhere, to cope with carry from bit 15 to bit 16. One further example is the sparc and the a.out format. The sparc has a similar problem to the 88k, in that some instructions don't have room for an entire offset, but on the sparc the parts are created in odd sized lumps. The designers of the a.out format chose to not use the data within the section for storing part of the offset; all the offset is kept within the reloc. Anything in the data should be ignored. save %sp,-112,%sp sethi %hi(_foo+0x12345678),%g2 ldsb [%g2+%lo(_foo+0x12345678)],%i0 ret restore Both relocs contain a pointer to foo, and the offsets contain junk. RELOCATION RECORDS FOR [.text]: offset type value 00000004 HI22 _foo+0x12345678 00000008 LO10 _foo+0x12345678 00000000 9de3bf90 ; save %sp,-112,%sp 00000004 05000000 ; sethi %hi(_foo+0),%g2 00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0 0000000c 81c7e008 ; ret 00000010 81e80000 ; restore howto The howto field can be imagined as a relocation instruction. It is a pointer to a structure which contains information on what to do with all of the other information in the reloc record and data section. A back end would normally have a relocation instruction set and turn relocations into pointers to the correct structure on input - but it would be possible to create each howto field on demand. enum complain_overflowIndicates what sort of overflow checking should be done when performing a relocation. enum complain_overflow { /* Do not complain on overflow. */ complain_overflow_dont, /* Complain if the value overflows when considered as a signed number one bit larger than the field. ie. A bitfield of N bits is allowed to represent -2**n to 2**n-1. */ complain_overflow_bitfield, /* Complain if the value overflows when considered as a signed number. */ complain_overflow_signed, /* Complain if the value overflows when considered as an unsigned number. */ complain_overflow_unsigned }; reloc_howto_typeThe reloc_howto_type is a structure which contains all the information that libbfd needs to know to tie up a back end's data. struct bfd_symbol; /* Forward declaration. */ struct reloc_howto_struct { /* The type field has mainly a documentary use - the back end can do what it wants with it, though normally the back end's external idea of what a reloc number is stored in this field. For example, a PC relative word relocation in a coff environment has the type 023 - because that's what the outside world calls a R_PCRWORD reloc. */ unsigned int type; /* The value the final relocation is shifted right by. This drops unwanted data from the relocation. */ unsigned int rightshift; /* The size of the item to be relocated. This is *not* a power-of-two measure. To get the number of bytes operated on by a type of relocation, use bfd_get_reloc_size. */ int size; /* The number of bits in the item to be relocated. This is used when doing overflow checking. */ unsigned int bitsize; /* Notes that the relocation is relative to the location in the data section of the addend. The relocation function will subtract from the relocation value the address of the location being relocated. */ bfd_boolean pc_relative; /* The bit position of the reloc value in the destination. The relocated value is left shifted by this amount. */ unsigned int bitpos; /* What type of overflow error should be checked for when relocating. */ enum complain_overflow complain_on_overflow; /* If this field is non null, then the supplied function is called rather than the normal function. This allows really strange relocation methods to be accommodated (e.g., i960 callj instructions). */ bfd_reloc_status_type (*special_function) (bfd *, arelent *, struct bfd_symbol *, void *, asection *, bfd *, char **); /* The textual name of the relocation type. */ char *name; /* Some formats record a relocation addend in the section contents rather than with the relocation. For ELF formats this is the distinction between USE_REL and USE_RELA (though the code checks for USE_REL == 1/0). The value of this field is TRUE if the addend is recorded with the section contents; when performing a partial link (ld -r) the section contents (the data) will be modified. The value of this field is FALSE if addends are recorded with the relocation (in arelent.addend); when performing a partial link the relocation will be modified. All relocations for all ELF USE_RELA targets should set this field to FALSE (values of TRUE should be looked on with suspicion). However, the converse is not true: not all relocations of all ELF USE_REL targets set this field to TRUE. Why this is so is peculiar to each particular target. For relocs that aren't used in partial links (e.g. GOT stuff) it doesn't matter what this is set to. */ bfd_boolean partial_inplace; /* src_mask selects the part of the instruction (or data) to be used in the relocation sum. If the target relocations don't have an addend in the reloc, eg. ELF USE_REL, src_mask will normally equal dst_mask to extract the addend from the section contents. If relocations do have an addend in the reloc, eg. ELF USE_RELA, this field should be zero. Non-zero values for ELF USE_RELA targets are bogus as in those cases the value in the dst_mask part of the section contents should be treated as garbage. */ bfd_vma src_mask; /* dst_mask selects which parts of the instruction (or data) are replaced with a relocated value. */ bfd_vma dst_mask; /* When some formats create PC relative instructions, they leave the value of the pc of the place being relocated in the offset slot of the instruction, so that a PC relative relocation can be made just by adding in an ordinary offset (e.g., sun3 a.out). Some formats leave the displacement part of an instruction empty (e.g., m88k bcs); this flag signals the fact. */ bfd_boolean pcrel_offset; }; The HOWTO Macro The HOWTO MacroDescription The HOWTO define is horrible and will go away. #define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \ { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC } Description And will be replaced with the totally magic way. But for the moment, we are compatible, so do it this way. #define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \ HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \ NAME, FALSE, 0, 0, IN) Description This is used to fill in an empty howto entry in an array. #define EMPTY_HOWTO(C) \ HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \ NULL, FALSE, 0, 0, FALSE) Description Helper routine to turn a symbol into a relocation value. #define HOWTO_PREPARE(relocation, symbol) \ { \ if (symbol != NULL) \ { \ if (bfd_is_com_section (symbol->section)) \ { \ relocation = 0; \ } \ else \ { \ relocation = symbol->value; \ } \ } \ } bfd_get_reloc_size bfd_get_reloc_sizeSynopsis unsigned int bfd_get_reloc_size (reloc_howto_type *); Description For a reloc_howto_type that operates on a fixed number of bytes, this returns the number of bytes operated on. arelent_chain arelent_chainDescription How relocs are tied together in an asection: typedef struct relent_chain { arelent relent; struct relent_chain *next; } arelent_chain; bfd_check_overflow bfd_check_overflowSynopsis bfd_reloc_status_type bfd_check_overflow (enum complain_overflow how, unsigned int bitsize, unsigned int rightshift, unsigned int addrsize, bfd_vma relocation); Description Perform overflow checking on relocation which has bitsize significant bits and will be shifted right by rightshift bits, on a machine with addresses containing addrsize significant bits. The result is either of bfd_reloc_ok or bfd_reloc_overflow. bfd_perform_relocation bfd_perform_relocationSynopsis bfd_reloc_status_type bfd_perform_relocation (bfd *abfd, arelent *reloc_entry, void *data, asection *input_section, bfd *output_bfd, char **error_message); Description If output_bfd is supplied to this function, the generated image will be relocatable; the relocations are copied to the output file after they have been changed to reflect the new state of the world. There are two ways of reflecting the results of partial linkage in an output file: by modifying the output data in place, and by modifying the relocation record. Some native formats (e.g., basic a.out and basic coff) have no way of specifying an addend in the relocation type, so the addend has to go in the output data. This is no big deal since in these formats the output data slot will always be big enough for the addend. Complex reloc types with addends were invented to solve just this problem. The error_message argument is set to an error message if this return bfd_reloc_dangerous. bfd_install_relocation bfd_install_relocationSynopsis bfd_reloc_status_type bfd_install_relocation (bfd *abfd, arelent *reloc_entry, void *data, bfd_vma data_start, asection *input_section, char **error_message); Description This looks remarkably like bfd_perform_relocation, except it does not expect that the section contents have been filled in. I.e., it's suitable for use when creating, rather than applying a relocation. For now, this function should be considered reserved for the assembler. The howto managerWhen an application wants to create a relocation, but doesn't know what the target machine might call it, it can find out by using this bit of code. bfd_reloc_code_type bfd_reloc_code_typeDescription The insides of a reloc code. The idea is that, eventually, there will be one enumerator for every type of relocation we ever do. Pass one of these values to bfd_reloc_type_lookup, and it'll return a howto pointer. This does mean that the application must determine the correct enumerator value; you can't get a howto pointer from a random set of attributes. Here are the possible values for enum bfd_reloc_code_real: BFD_RELOC_64 — : BFD_RELOC_64 BFD_RELOC_32 — : BFD_RELOC_32 BFD_RELOC_26 — : BFD_RELOC_26 BFD_RELOC_24 — : BFD_RELOC_24 BFD_RELOC_16 — : BFD_RELOC_16 BFD_RELOC_14 — : BFD_RELOC_14 BFD_RELOC_8 — : BFD_RELOC_8 Basic absolute relocations of N bits. BFD_RELOC_64_PCREL — : BFD_RELOC_64_PCREL BFD_RELOC_32_PCREL — : BFD_RELOC_32_PCREL BFD_RELOC_24_PCREL — : BFD_RELOC_24_PCREL BFD_RELOC_16_PCREL — : BFD_RELOC_16_PCREL BFD_RELOC_12_PCREL — : BFD_RELOC_12_PCREL BFD_RELOC_8_PCREL — : BFD_RELOC_8_PCREL PC-relative relocations. Sometimes these are relative to the addressof the relocation itself; sometimes they are relative to the start ofthe section containing the relocation. It depends on the specific target.The 24-bit relocation is used in some Intel 960 configurations. BFD_RELOC_32_SECREL — : BFD_RELOC_32_SECREL Section relative relocations. Some targets need this for DWARF2. BFD_RELOC_32_GOT_PCREL — : BFD_RELOC_32_GOT_PCREL BFD_RELOC_16_GOT_PCREL — : BFD_RELOC_16_GOT_PCREL BFD_RELOC_8_GOT_PCREL — : BFD_RELOC_8_GOT_PCREL BFD_RELOC_32_GOTOFF — : BFD_RELOC_32_GOTOFF BFD_RELOC_16_GOTOFF — : BFD_RELOC_16_GOTOFF BFD_RELOC_LO16_GOTOFF — : BFD_RELOC_LO16_GOTOFF BFD_RELOC_HI16_GOTOFF — : BFD_RELOC_HI16_GOTOFF BFD_RELOC_HI16_S_GOTOFF — : BFD_RELOC_HI16_S_GOTOFF BFD_RELOC_8_GOTOFF — : BFD_RELOC_8_GOTOFF BFD_RELOC_64_PLT_PCREL — : BFD_RELOC_64_PLT_PCREL BFD_RELOC_32_PLT_PCREL — : BFD_RELOC_32_PLT_PCREL BFD_RELOC_24_PLT_PCREL — : BFD_RELOC_24_PLT_PCREL BFD_RELOC_16_PLT_PCREL — : BFD_RELOC_16_PLT_PCREL BFD_RELOC_8_PLT_PCREL — : BFD_RELOC_8_PLT_PCREL BFD_RELOC_64_PLTOFF — : BFD_RELOC_64_PLTOFF BFD_RELOC_32_PLTOFF — : BFD_RELOC_32_PLTOFF BFD_RELOC_16_PLTOFF — : BFD_RELOC_16_PLTOFF BFD_RELOC_LO16_PLTOFF — : BFD_RELOC_LO16_PLTOFF BFD_RELOC_HI16_PLTOFF — : BFD_RELOC_HI16_PLTOFF BFD_RELOC_HI16_S_PLTOFF — : BFD_RELOC_HI16_S_PLTOFF BFD_RELOC_8_PLTOFF — : BFD_RELOC_8_PLTOFF For ELF. BFD_RELOC_68K_GLOB_DAT — : BFD_RELOC_68K_GLOB_DAT BFD_RELOC_68K_JMP_SLOT — : BFD_RELOC_68K_JMP_SLOT BFD_RELOC_68K_RELATIVE — : BFD_RELOC_68K_RELATIVE Relocations used by 68K ELF. BFD_RELOC_32_BASEREL — : BFD_RELOC_32_BASEREL BFD_RELOC_16_BASEREL — : BFD_RELOC_16_BASEREL BFD_RELOC_LO16_BASEREL — : BFD_RELOC_LO16_BASEREL BFD_RELOC_HI16_BASEREL — : BFD_RELOC_HI16_BASEREL BFD_RELOC_HI16_S_BASEREL — : BFD_RELOC_HI16_S_BASEREL BFD_RELOC_8_BASEREL — : BFD_RELOC_8_BASEREL BFD_RELOC_RVA — : BFD_RELOC_RVA Linkage-table relative. BFD_RELOC_8_FFnn — : BFD_RELOC_8_FFnn Absolute 8-bit relocation, but used to form an address like 0xFFnn. BFD_RELOC_32_PCREL_S2 — : BFD_RELOC_32_PCREL_S2 BFD_RELOC_16_PCREL_S2 — : BFD_RELOC_16_PCREL_S2 BFD_RELOC_23_PCREL_S2 — : BFD_RELOC_23_PCREL_S2 These PC-relative relocations are stored as word displacements –i.e., byte displacements shifted right two bits. The 30-bit worddisplacement (<<32_PCREL_S2>> – 32 bits, shifted 2) is used on theSPARC. (SPARC tools generally refer to this as <<WDISP30>>.) Thesigned 16-bit displacement is used on the MIPS, and the 23-bitdisplacement is used on the Alpha. BFD_RELOC_HI22 — : BFD_RELOC_HI22 BFD_RELOC_LO10 — : BFD_RELOC_LO10 High 22 bits and low 10 bits of 32-bit value, placed into lower bits ofthe target word. These are used on the SPARC. BFD_RELOC_GPREL16 — : BFD_RELOC_GPREL16 BFD_RELOC_GPREL32 — : BFD_RELOC_GPREL32 For systems that allocate a Global Pointer register, these aredisplacements off that register. These relocation types arehandled specially, because the value the register will have isdecided relatively late. BFD_RELOC_I960_CALLJ — : BFD_RELOC_I960_CALLJ Reloc types used for i960/b.out. BFD_RELOC_NONE — : BFD_RELOC_NONE BFD_RELOC_SPARC_WDISP22 — : BFD_RELOC_SPARC_WDISP22 BFD_RELOC_SPARC22 — : BFD_RELOC_SPARC22 BFD_RELOC_SPARC13 — : BFD_RELOC_SPARC13 BFD_RELOC_SPARC_GOT10 — : BFD_RELOC_SPARC_GOT10 BFD_RELOC_SPARC_GOT13 — : BFD_RELOC_SPARC_GOT13 BFD_RELOC_SPARC_GOT22 — : BFD_RELOC_SPARC_GOT22 BFD_RELOC_SPARC_PC10 — : BFD_RELOC_SPARC_PC10 BFD_RELOC_SPARC_PC22 — : BFD_RELOC_SPARC_PC22 BFD_RELOC_SPARC_WPLT30 — : BFD_RELOC_SPARC_WPLT30 BFD_RELOC_SPARC_COPY — : BFD_RELOC_SPARC_COPY BFD_RELOC_SPARC_GLOB_DAT — : BFD_RELOC_SPARC_GLOB_DAT BFD_RELOC_SPARC_JMP_SLOT — : BFD_RELOC_SPARC_JMP_SLOT BFD_RELOC_SPARC_RELATIVE — : BFD_RELOC_SPARC_RELATIVE BFD_RELOC_SPARC_UA16 — : BFD_RELOC_SPARC_UA16 BFD_RELOC_SPARC_UA32 — : BFD_RELOC_SPARC_UA32 BFD_RELOC_SPARC_UA64 — : BFD_RELOC_SPARC_UA64 SPARC ELF relocations. There is probably some overlap with otherrelocation types already defined. BFD_RELOC_SPARC_BASE13 — : BFD_RELOC_SPARC_BASE13 BFD_RELOC_SPARC_BASE22 — : BFD_RELOC_SPARC_BASE22 I think these are specific to SPARC a.out (e.g., Sun 4). BFD_RELOC_SPARC_64 — : BFD_RELOC_SPARC_64 BFD_RELOC_SPARC_10 — : BFD_RELOC_SPARC_10 BFD_RELOC_SPARC_11 — : BFD_RELOC_SPARC_11 BFD_RELOC_SPARC_OLO10 — : BFD_RELOC_SPARC_OLO10 BFD_RELOC_SPARC_HH22 — : BFD_RELOC_SPARC_HH22 BFD_RELOC_SPARC_HM10 — : BFD_RELOC_SPARC_HM10 BFD_RELOC_SPARC_LM22 — : BFD_RELOC_SPARC_LM22 BFD_RELOC_SPARC_PC_HH22 — : BFD_RELOC_SPARC_PC_HH22 BFD_RELOC_SPARC_PC_HM10 — : BFD_RELOC_SPARC_PC_HM10 BFD_RELOC_SPARC_PC_LM22 — : BFD_RELOC_SPARC_PC_LM22 BFD_RELOC_SPARC_WDISP16 — : BFD_RELOC_SPARC_WDISP16 BFD_RELOC_SPARC_WDISP19 — : BFD_RELOC_SPARC_WDISP19 BFD_RELOC_SPARC_7 — : BFD_RELOC_SPARC_7 BFD_RELOC_SPARC_6 — : BFD_RELOC_SPARC_6 BFD_RELOC_SPARC_5 — : BFD_RELOC_SPARC_5 BFD_RELOC_SPARC_DISP64 — : BFD_RELOC_SPARC_DISP64 BFD_RELOC_SPARC_PLT32 — : BFD_RELOC_SPARC_PLT32 BFD_RELOC_SPARC_PLT64 — : BFD_RELOC_SPARC_PLT64 BFD_RELOC_SPARC_HIX22 — : BFD_RELOC_SPARC_HIX22 BFD_RELOC_SPARC_LOX10 — : BFD_RELOC_SPARC_LOX10 BFD_RELOC_SPARC_H44 — : BFD_RELOC_SPARC_H44 BFD_RELOC_SPARC_M44 — : BFD_RELOC_SPARC_M44 BFD_RELOC_SPARC_L44 — : BFD_RELOC_SPARC_L44 BFD_RELOC_SPARC_REGISTER — : BFD_RELOC_SPARC_REGISTER SPARC64 relocations BFD_RELOC_SPARC_REV32 — : BFD_RELOC_SPARC_REV32 SPARC little endian relocation BFD_RELOC_SPARC_TLS_GD_HI22 — : BFD_RELOC_SPARC_TLS_GD_HI22 BFD_RELOC_SPARC_TLS_GD_LO10 — : BFD_RELOC_SPARC_TLS_GD_LO10 BFD_RELOC_SPARC_TLS_GD_ADD — : BFD_RELOC_SPARC_TLS_GD_ADD BFD_RELOC_SPARC_TLS_GD_CALL — : BFD_RELOC_SPARC_TLS_GD_CALL BFD_RELOC_SPARC_TLS_LDM_HI22 — : BFD_RELOC_SPARC_TLS_LDM_HI22 BFD_RELOC_SPARC_TLS_LDM_LO10 — : BFD_RELOC_SPARC_TLS_LDM_LO10 BFD_RELOC_SPARC_TLS_LDM_ADD — : BFD_RELOC_SPARC_TLS_LDM_ADD BFD_RELOC_SPARC_TLS_LDM_CALL — : BFD_RELOC_SPARC_TLS_LDM_CALL BFD_RELOC_SPARC_TLS_LDO_HIX22 — : BFD_RELOC_SPARC_TLS_LDO_HIX22 BFD_RELOC_SPARC_TLS_LDO_LOX10 — : BFD_RELOC_SPARC_TLS_LDO_LOX10 BFD_RELOC_SPARC_TLS_LDO_ADD — : BFD_RELOC_SPARC_TLS_LDO_ADD BFD_RELOC_SPARC_TLS_IE_HI22 — : BFD_RELOC_SPARC_TLS_IE_HI22 BFD_RELOC_SPARC_TLS_IE_LO10 — : BFD_RELOC_SPARC_TLS_IE_LO10 BFD_RELOC_SPARC_TLS_IE_LD — : BFD_RELOC_SPARC_TLS_IE_LD BFD_RELOC_SPARC_TLS_IE_LDX — : BFD_RELOC_SPARC_TLS_IE_LDX BFD_RELOC_SPARC_TLS_IE_ADD — : BFD_RELOC_SPARC_TLS_IE_ADD BFD_RELOC_SPARC_TLS_LE_HIX22 — : BFD_RELOC_SPARC_TLS_LE_HIX22 BFD_RELOC_SPARC_TLS_LE_LOX10 — : BFD_RELOC_SPARC_TLS_LE_LOX10 BFD_RELOC_SPARC_TLS_DTPMOD32 — : BFD_RELOC_SPARC_TLS_DTPMOD32 BFD_RELOC_SPARC_TLS_DTPMOD64 — : BFD_RELOC_SPARC_TLS_DTPMOD64 BFD_RELOC_SPARC_TLS_DTPOFF32 — : BFD_RELOC_SPARC_TLS_DTPOFF32 BFD_RELOC_SPARC_TLS_DTPOFF64 — : BFD_RELOC_SPARC_TLS_DTPOFF64 BFD_RELOC_SPARC_TLS_TPOFF32 — : BFD_RELOC_SPARC_TLS_TPOFF32 BFD_RELOC_SPARC_TLS_TPOFF64 — : BFD_RELOC_SPARC_TLS_TPOFF64 SPARC TLS relocations BFD_RELOC_SPU_IMM7 — : BFD_RELOC_SPU_IMM7 BFD_RELOC_SPU_IMM8 — : BFD_RELOC_SPU_IMM8 BFD_RELOC_SPU_IMM10 — : BFD_RELOC_SPU_IMM10 BFD_RELOC_SPU_IMM10W — : BFD_RELOC_SPU_IMM10W BFD_RELOC_SPU_IMM16 — : BFD_RELOC_SPU_IMM16 BFD_RELOC_SPU_IMM16W — : BFD_RELOC_SPU_IMM16W BFD_RELOC_SPU_IMM18 — : BFD_RELOC_SPU_IMM18 BFD_RELOC_SPU_PCREL9a — : BFD_RELOC_SPU_PCREL9a BFD_RELOC_SPU_PCREL9b — : BFD_RELOC_SPU_PCREL9b BFD_RELOC_SPU_PCREL16 — : BFD_RELOC_SPU_PCREL16 BFD_RELOC_SPU_LO16 — : BFD_RELOC_SPU_LO16 BFD_RELOC_SPU_HI16 — : BFD_RELOC_SPU_HI16 SPU Relocations. BFD_RELOC_ALPHA_GPDISP_HI16 — : BFD_RELOC_ALPHA_GPDISP_HI16 Alpha ECOFF and ELF relocations. Some of these treat the symbol or"addend" in some special way.For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored whenwriting; when reading, it will be the absolute section symbol. Theaddend is the displacement in bytes of the "lda" instruction fromthe "ldah" instruction (which is at the address of this reloc). BFD_RELOC_ALPHA_GPDISP_LO16 — : BFD_RELOC_ALPHA_GPDISP_LO16 For GPDISP_LO16 ("ignore") relocations, the symbol is handled aswith GPDISP_HI16 relocs. The addend is ignored when writing therelocations out, and is filled in with the file's GP value onreading, for convenience. BFD_RELOC_ALPHA_GPDISP — : BFD_RELOC_ALPHA_GPDISP The ELF GPDISP relocation is exactly the same as the GPDISP_HI16relocation except that there is no accompanying GPDISP_LO16relocation. BFD_RELOC_ALPHA_LITERAL — : BFD_RELOC_ALPHA_LITERAL BFD_RELOC_ALPHA_ELF_LITERAL — : BFD_RELOC_ALPHA_ELF_LITERAL BFD_RELOC_ALPHA_LITUSE — : BFD_RELOC_ALPHA_LITUSE The Alpha LITERAL/LITUSE relocs are produced by a symbol reference;the assembler turns it into a LDQ instruction to load the address ofthe symbol, and then fills in a register in the real instruction.The LITERAL reloc, at the LDQ instruction, refers to the .litasection symbol. The addend is ignored when writing, but is filledin with the file's GP value on reading, for convenience, as with theGPDISP_LO16 reloc.The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16.It should refer to the symbol to be referenced, as with 16_GOTOFF,but it generates output not based on the position within the .gotsection, but relative to the GP value chosen for the file during thefinal link stage.The LITUSE reloc, on the instruction using the loaded address, givesinformation to the linker that it might be able to use to optimizeaway some literal section references. The symbol is ignored (readas the absolute section symbol), and the "addend" indicates the typeof instruction using the register:1 - "memory" fmt insn2 - byte-manipulation (byte offset reg)3 - jsr (target of branch) BFD_RELOC_ALPHA_HINT — : BFD_RELOC_ALPHA_HINT The HINT relocation indicates a value that should be filled into the"hint" field of a jmp/jsr/ret instruction, for possible branch-prediction logic which may be provided on some processors. BFD_RELOC_ALPHA_LINKAGE — : BFD_RELOC_ALPHA_LINKAGE The LINKAGE relocation outputs a linkage pair in the object file,which is filled by the linker. BFD_RELOC_ALPHA_CODEADDR — : BFD_RELOC_ALPHA_CODEADDR The CODEADDR relocation outputs a STO_CA in the object file,which is filled by the linker. BFD_RELOC_ALPHA_GPREL_HI16 — : BFD_RELOC_ALPHA_GPREL_HI16 BFD_RELOC_ALPHA_GPREL_LO16 — : BFD_RELOC_ALPHA_GPREL_LO16 The GPREL_HI/LO relocations together form a 32-bit offset from theGP register. BFD_RELOC_ALPHA_BRSGP — : BFD_RELOC_ALPHA_BRSGP Like BFD_RELOC_23_PCREL_S2, except that the source and target mustshare a common GP, and the target address is adjusted forSTO_ALPHA_STD_GPLOAD. BFD_RELOC_ALPHA_TLSGD — : BFD_RELOC_ALPHA_TLSGD BFD_RELOC_ALPHA_TLSLDM — : BFD_RELOC_ALPHA_TLSLDM BFD_RELOC_ALPHA_DTPMOD64 — : BFD_RELOC_ALPHA_DTPMOD64 BFD_RELOC_ALPHA_GOTDTPREL16 — : BFD_RELOC_ALPHA_GOTDTPREL16 BFD_RELOC_ALPHA_DTPREL64 — : BFD_RELOC_ALPHA_DTPREL64 BFD_RELOC_ALPHA_DTPREL_HI16 — : BFD_RELOC_ALPHA_DTPREL_HI16 BFD_RELOC_ALPHA_DTPREL_LO16 — : BFD_RELOC_ALPHA_DTPREL_LO16 BFD_RELOC_ALPHA_DTPREL16 — : BFD_RELOC_ALPHA_DTPREL16 BFD_RELOC_ALPHA_GOTTPREL16 — : BFD_RELOC_ALPHA_GOTTPREL16 BFD_RELOC_ALPHA_TPREL64 — : BFD_RELOC_ALPHA_TPREL64 BFD_RELOC_ALPHA_TPREL_HI16 — : BFD_RELOC_ALPHA_TPREL_HI16 BFD_RELOC_ALPHA_TPREL_LO16 — : BFD_RELOC_ALPHA_TPREL_LO16 BFD_RELOC_ALPHA_TPREL16 — : BFD_RELOC_ALPHA_TPREL16 Alpha thread-local storage relocations. BFD_RELOC_MIPS_JMP — : BFD_RELOC_MIPS_JMP Bits 27..2 of the relocation address shifted right 2 bits;simple reloc otherwise. BFD_RELOC_MIPS16_JMP — : BFD_RELOC_MIPS16_JMP The MIPS16 jump instruction. BFD_RELOC_MIPS16_GPREL — : BFD_RELOC_MIPS16_GPREL MIPS16 GP relative reloc. BFD_RELOC_HI16 — : BFD_RELOC_HI16 High 16 bits of 32-bit value; simple reloc. BFD_RELOC_HI16_S — : BFD_RELOC_HI16_S High 16 bits of 32-bit value but the low 16 bits will be signextended and added to form the final result. If the low 16bits form a negative number, we need to add one to the high valueto compensate for the borrow when the low bits are added. BFD_RELOC_LO16 — : BFD_RELOC_LO16 Low 16 bits. BFD_RELOC_HI16_PCREL — : BFD_RELOC_HI16_PCREL High 16 bits of 32-bit pc-relative value BFD_RELOC_HI16_S_PCREL — : BFD_RELOC_HI16_S_PCREL High 16 bits of 32-bit pc-relative value, adjusted BFD_RELOC_LO16_PCREL — : BFD_RELOC_LO16_PCREL Low 16 bits of pc-relative value BFD_RELOC_MIPS16_HI16 — : BFD_RELOC_MIPS16_HI16 MIPS16 high 16 bits of 32-bit value. BFD_RELOC_MIPS16_HI16_S — : BFD_RELOC_MIPS16_HI16_S MIPS16 high 16 bits of 32-bit value but the low 16 bits will be signextended and added to form the final result. If the low 16bits form a negative number, we need to add one to the high valueto compensate for the borrow when the low bits are added. BFD_RELOC_MIPS16_LO16 — : BFD_RELOC_MIPS16_LO16 MIPS16 low 16 bits. BFD_RELOC_MIPS_LITERAL — : BFD_RELOC_MIPS_LITERAL Relocation against a MIPS literal section. BFD_RELOC_MIPS_GOT16 — : BFD_RELOC_MIPS_GOT16 BFD_RELOC_MIPS_CALL16 — : BFD_RELOC_MIPS_CALL16 BFD_RELOC_MIPS_GOT_HI16 — : BFD_RELOC_MIPS_GOT_HI16 BFD_RELOC_MIPS_GOT_LO16 — : BFD_RELOC_MIPS_GOT_LO16 BFD_RELOC_MIPS_CALL_HI16 — : BFD_RELOC_MIPS_CALL_HI16 BFD_RELOC_MIPS_CALL_LO16 — : BFD_RELOC_MIPS_CALL_LO16 BFD_RELOC_MIPS_SUB — : BFD_RELOC_MIPS_SUB BFD_RELOC_MIPS_GOT_PAGE — : BFD_RELOC_MIPS_GOT_PAGE BFD_RELOC_MIPS_GOT_OFST — : BFD_RELOC_MIPS_GOT_OFST BFD_RELOC_MIPS_GOT_DISP — : BFD_RELOC_MIPS_GOT_DISP BFD_RELOC_MIPS_SHIFT5 — : BFD_RELOC_MIPS_SHIFT5 BFD_RELOC_MIPS_SHIFT6 — : BFD_RELOC_MIPS_SHIFT6 BFD_RELOC_MIPS_INSERT_A — : BFD_RELOC_MIPS_INSERT_A BFD_RELOC_MIPS_INSERT_B — : BFD_RELOC_MIPS_INSERT_B BFD_RELOC_MIPS_DELETE — : BFD_RELOC_MIPS_DELETE BFD_RELOC_MIPS_HIGHEST — : BFD_RELOC_MIPS_HIGHEST BFD_RELOC_MIPS_HIGHER — : BFD_RELOC_MIPS_HIGHER BFD_RELOC_MIPS_SCN_DISP — : BFD_RELOC_MIPS_SCN_DISP BFD_RELOC_MIPS_REL16 — : BFD_RELOC_MIPS_REL16 BFD_RELOC_MIPS_RELGOT — : BFD_RELOC_MIPS_RELGOT BFD_RELOC_MIPS_JALR — : BFD_RELOC_MIPS_JALR BFD_RELOC_MIPS_TLS_DTPMOD32 — : BFD_RELOC_MIPS_TLS_DTPMOD32 BFD_RELOC_MIPS_TLS_DTPREL32 — : BFD_RELOC_MIPS_TLS_DTPREL32 BFD_RELOC_MIPS_TLS_DTPMOD64 — : BFD_RELOC_MIPS_TLS_DTPMOD64 BFD_RELOC_MIPS_TLS_DTPREL64 — : BFD_RELOC_MIPS_TLS_DTPREL64 BFD_RELOC_MIPS_TLS_GD — : BFD_RELOC_MIPS_TLS_GD BFD_RELOC_MIPS_TLS_LDM — : BFD_RELOC_MIPS_TLS_LDM BFD_RELOC_MIPS_TLS_DTPREL_HI16 — : BFD_RELOC_MIPS_TLS_DTPREL_HI16 BFD_RELOC_MIPS_TLS_DTPREL_LO16 — : BFD_RELOC_MIPS_TLS_DTPREL_LO16 BFD_RELOC_MIPS_TLS_GOTTPREL — : BFD_RELOC_MIPS_TLS_GOTTPREL BFD_RELOC_MIPS_TLS_TPREL32 — : BFD_RELOC_MIPS_TLS_TPREL32 BFD_RELOC_MIPS_TLS_TPREL64 — : BFD_RELOC_MIPS_TLS_TPREL64 BFD_RELOC_MIPS_TLS_TPREL_HI16 — : BFD_RELOC_MIPS_TLS_TPREL_HI16 BFD_RELOC_MIPS_TLS_TPREL_LO16 — : BFD_RELOC_MIPS_TLS_TPREL_LO16 MIPS ELF relocations. BFD_RELOC_MIPS_COPY — : BFD_RELOC_MIPS_COPY BFD_RELOC_MIPS_JUMP_SLOT — : BFD_RELOC_MIPS_JUMP_SLOT MIPS ELF relocations (VxWorks extensions). BFD_RELOC_FRV_LABEL16 — : BFD_RELOC_FRV_LABEL16 BFD_RELOC_FRV_LABEL24 — : BFD_RELOC_FRV_LABEL24 BFD_RELOC_FRV_LO16 — : BFD_RELOC_FRV_LO16 BFD_RELOC_FRV_HI16 — : BFD_RELOC_FRV_HI16 BFD_RELOC_FRV_GPREL12 — : BFD_RELOC_FRV_GPREL12 BFD_RELOC_FRV_GPRELU12 — : BFD_RELOC_FRV_GPRELU12 BFD_RELOC_FRV_GPREL32 — : BFD_RELOC_FRV_GPREL32 BFD_RELOC_FRV_GPRELHI — : BFD_RELOC_FRV_GPRELHI BFD_RELOC_FRV_GPRELLO — : BFD_RELOC_FRV_GPRELLO BFD_RELOC_FRV_GOT12 — : BFD_RELOC_FRV_GOT12 BFD_RELOC_FRV_GOTHI — : BFD_RELOC_FRV_GOTHI BFD_RELOC_FRV_GOTLO — : BFD_RELOC_FRV_GOTLO BFD_RELOC_FRV_FUNCDESC — : BFD_RELOC_FRV_FUNCDESC BFD_RELOC_FRV_FUNCDESC_GOT12 — : BFD_RELOC_FRV_FUNCDESC_GOT12 BFD_RELOC_FRV_FUNCDESC_GOTHI — : BFD_RELOC_FRV_FUNCDESC_GOTHI BFD_RELOC_FRV_FUNCDESC_GOTLO — : BFD_RELOC_FRV_FUNCDESC_GOTLO BFD_RELOC_FRV_FUNCDESC_VALUE — : BFD_RELOC_FRV_FUNCDESC_VALUE BFD_RELOC_FRV_FUNCDESC_GOTOFF12 — : BFD_RELOC_FRV_FUNCDESC_GOTOFF12 BFD_RELOC_FRV_FUNCDESC_GOTOFFHI — : BFD_RELOC_FRV_FUNCDESC_GOTOFFHI BFD_RELOC_FRV_FUNCDESC_GOTOFFLO — : BFD_RELOC_FRV_FUNCDESC_GOTOFFLO BFD_RELOC_FRV_GOTOFF12 — : BFD_RELOC_FRV_GOTOFF12 BFD_RELOC_FRV_GOTOFFHI — : BFD_RELOC_FRV_GOTOFFHI BFD_RELOC_FRV_GOTOFFLO — : BFD_RELOC_FRV_GOTOFFLO BFD_RELOC_FRV_GETTLSOFF — : BFD_RELOC_FRV_GETTLSOFF BFD_RELOC_FRV_TLSDESC_VALUE — : BFD_RELOC_FRV_TLSDESC_VALUE BFD_RELOC_FRV_GOTTLSDESC12 — : BFD_RELOC_FRV_GOTTLSDESC12 BFD_RELOC_FRV_GOTTLSDESCHI — : BFD_RELOC_FRV_GOTTLSDESCHI BFD_RELOC_FRV_GOTTLSDESCLO — : BFD_RELOC_FRV_GOTTLSDESCLO BFD_RELOC_FRV_TLSMOFF12 — : BFD_RELOC_FRV_TLSMOFF12 BFD_RELOC_FRV_TLSMOFFHI — : BFD_RELOC_FRV_TLSMOFFHI BFD_RELOC_FRV_TLSMOFFLO — : BFD_RELOC_FRV_TLSMOFFLO BFD_RELOC_FRV_GOTTLSOFF12 — : BFD_RELOC_FRV_GOTTLSOFF12 BFD_RELOC_FRV_GOTTLSOFFHI — : BFD_RELOC_FRV_GOTTLSOFFHI BFD_RELOC_FRV_GOTTLSOFFLO — : BFD_RELOC_FRV_GOTTLSOFFLO BFD_RELOC_FRV_TLSOFF — : BFD_RELOC_FRV_TLSOFF BFD_RELOC_FRV_TLSDESC_RELAX — : BFD_RELOC_FRV_TLSDESC_RELAX BFD_RELOC_FRV_GETTLSOFF_RELAX — : BFD_RELOC_FRV_GETTLSOFF_RELAX BFD_RELOC_FRV_TLSOFF_RELAX — : BFD_RELOC_FRV_TLSOFF_RELAX BFD_RELOC_FRV_TLSMOFF — : BFD_RELOC_FRV_TLSMOFF Fujitsu Frv Relocations. BFD_RELOC_MN10300_GOTOFF24 — : BFD_RELOC_MN10300_GOTOFF24 This is a 24bit GOT-relative reloc for the mn10300. BFD_RELOC_MN10300_GOT32 — : BFD_RELOC_MN10300_GOT32 This is a 32bit GOT-relative reloc for the mn10300, offset by two bytesin the instruction. BFD_RELOC_MN10300_GOT24 — : BFD_RELOC_MN10300_GOT24 This is a 24bit GOT-relative reloc for the mn10300, offset by two bytesin the instruction. BFD_RELOC_MN10300_GOT16 — : BFD_RELOC_MN10300_GOT16 This is a 16bit GOT-relative reloc for the mn10300, offset by two bytesin the instruction. BFD_RELOC_MN10300_COPY — : BFD_RELOC_MN10300_COPY Copy symbol at runtime. BFD_RELOC_MN10300_GLOB_DAT — : BFD_RELOC_MN10300_GLOB_DAT Create GOT entry. BFD_RELOC_MN10300_JMP_SLOT — : BFD_RELOC_MN10300_JMP_SLOT Create PLT entry. BFD_RELOC_MN10300_RELATIVE — : BFD_RELOC_MN10300_RELATIVE Adjust by program base. BFD_RELOC_386_GOT32 — : BFD_RELOC_386_GOT32 BFD_RELOC_386_PLT32 — : BFD_RELOC_386_PLT32 BFD_RELOC_386_COPY — : BFD_RELOC_386_COPY BFD_RELOC_386_GLOB_DAT — : BFD_RELOC_386_GLOB_DAT BFD_RELOC_386_JUMP_SLOT — : BFD_RELOC_386_JUMP_SLOT BFD_RELOC_386_RELATIVE — : BFD_RELOC_386_RELATIVE BFD_RELOC_386_GOTOFF — : BFD_RELOC_386_GOTOFF BFD_RELOC_386_GOTPC — : BFD_RELOC_386_GOTPC BFD_RELOC_386_TLS_TPOFF — : BFD_RELOC_386_TLS_TPOFF BFD_RELOC_386_TLS_IE — : BFD_RELOC_386_TLS_IE BFD_RELOC_386_TLS_GOTIE — : BFD_RELOC_386_TLS_GOTIE BFD_RELOC_386_TLS_LE — : BFD_RELOC_386_TLS_LE BFD_RELOC_386_TLS_GD — : BFD_RELOC_386_TLS_GD BFD_RELOC_386_TLS_LDM — : BFD_RELOC_386_TLS_LDM BFD_RELOC_386_TLS_LDO_32 — : BFD_RELOC_386_TLS_LDO_32 BFD_RELOC_386_TLS_IE_32 — : BFD_RELOC_386_TLS_IE_32 BFD_RELOC_386_TLS_LE_32 — : BFD_RELOC_386_TLS_LE_32 BFD_RELOC_386_TLS_DTPMOD32 — : BFD_RELOC_386_TLS_DTPMOD32 BFD_RELOC_386_TLS_DTPOFF32 — : BFD_RELOC_386_TLS_DTPOFF32 BFD_RELOC_386_TLS_TPOFF32 — : BFD_RELOC_386_TLS_TPOFF32 BFD_RELOC_386_TLS_GOTDESC — : BFD_RELOC_386_TLS_GOTDESC BFD_RELOC_386_TLS_DESC_CALL — : BFD_RELOC_386_TLS_DESC_CALL BFD_RELOC_386_TLS_DESC — : BFD_RELOC_386_TLS_DESC i386/elf relocations BFD_RELOC_X86_64_GOT32 — : BFD_RELOC_X86_64_GOT32 BFD_RELOC_X86_64_PLT32 — : BFD_RELOC_X86_64_PLT32 BFD_RELOC_X86_64_COPY — : BFD_RELOC_X86_64_COPY BFD_RELOC_X86_64_GLOB_DAT — : BFD_RELOC_X86_64_GLOB_DAT BFD_RELOC_X86_64_JUMP_SLOT — : BFD_RELOC_X86_64_JUMP_SLOT BFD_RELOC_X86_64_RELATIVE — : BFD_RELOC_X86_64_RELATIVE BFD_RELOC_X86_64_GOTPCREL — : BFD_RELOC_X86_64_GOTPCREL BFD_RELOC_X86_64_32S — : BFD_RELOC_X86_64_32S BFD_RELOC_X86_64_DTPMOD64 — : BFD_RELOC_X86_64_DTPMOD64 BFD_RELOC_X86_64_DTPOFF64 — : BFD_RELOC_X86_64_DTPOFF64 BFD_RELOC_X86_64_TPOFF64 — : BFD_RELOC_X86_64_TPOFF64 BFD_RELOC_X86_64_TLSGD — : BFD_RELOC_X86_64_TLSGD BFD_RELOC_X86_64_TLSLD — : BFD_RELOC_X86_64_TLSLD BFD_RELOC_X86_64_DTPOFF32 — : BFD_RELOC_X86_64_DTPOFF32 BFD_RELOC_X86_64_GOTTPOFF — : BFD_RELOC_X86_64_GOTTPOFF BFD_RELOC_X86_64_TPOFF32 — : BFD_RELOC_X86_64_TPOFF32 BFD_RELOC_X86_64_GOTOFF64 — : BFD_RELOC_X86_64_GOTOFF64 BFD_RELOC_X86_64_GOTPC32 — : BFD_RELOC_X86_64_GOTPC32 BFD_RELOC_X86_64_GOT64 — : BFD_RELOC_X86_64_GOT64 BFD_RELOC_X86_64_GOTPCREL64 — : BFD_RELOC_X86_64_GOTPCREL64 BFD_RELOC_X86_64_GOTPC64 — : BFD_RELOC_X86_64_GOTPC64 BFD_RELOC_X86_64_GOTPLT64 — : BFD_RELOC_X86_64_GOTPLT64 BFD_RELOC_X86_64_PLTOFF64 — : BFD_RELOC_X86_64_PLTOFF64 BFD_RELOC_X86_64_GOTPC32_TLSDESC — : BFD_RELOC_X86_64_GOTPC32_TLSDESC BFD_RELOC_X86_64_TLSDESC_CALL — : BFD_RELOC_X86_64_TLSDESC_CALL BFD_RELOC_X86_64_TLSDESC — : BFD_RELOC_X86_64_TLSDESC x86-64/elf relocations BFD_RELOC_NS32K_IMM_8 — : BFD_RELOC_NS32K_IMM_8 BFD_RELOC_NS32K_IMM_16 — : BFD_RELOC_NS32K_IMM_16 BFD_RELOC_NS32K_IMM_32 — : BFD_RELOC_NS32K_IMM_32 BFD_RELOC_NS32K_IMM_8_PCREL — : BFD_RELOC_NS32K_IMM_8_PCREL BFD_RELOC_NS32K_IMM_16_PCREL — : BFD_RELOC_NS32K_IMM_16_PCREL BFD_RELOC_NS32K_IMM_32_PCREL — : BFD_RELOC_NS32K_IMM_32_PCREL BFD_RELOC_NS32K_DISP_8 — : BFD_RELOC_NS32K_DISP_8 BFD_RELOC_NS32K_DISP_16 — : BFD_RELOC_NS32K_DISP_16 BFD_RELOC_NS32K_DISP_32 — : BFD_RELOC_NS32K_DISP_32 BFD_RELOC_NS32K_DISP_8_PCREL — : BFD_RELOC_NS32K_DISP_8_PCREL BFD_RELOC_NS32K_DISP_16_PCREL — : BFD_RELOC_NS32K_DISP_16_PCREL BFD_RELOC_NS32K_DISP_32_PCREL — : BFD_RELOC_NS32K_DISP_32_PCREL ns32k relocations BFD_RELOC_PDP11_DISP_8_PCREL — : BFD_RELOC_PDP11_DISP_8_PCREL BFD_RELOC_PDP11_DISP_6_PCREL — : BFD_RELOC_PDP11_DISP_6_PCREL PDP11 relocations BFD_RELOC_PJ_CODE_HI16 — : BFD_RELOC_PJ_CODE_HI16 BFD_RELOC_PJ_CODE_LO16 — : BFD_RELOC_PJ_CODE_LO16 BFD_RELOC_PJ_CODE_DIR16 — : BFD_RELOC_PJ_CODE_DIR16 BFD_RELOC_PJ_CODE_DIR32 — : BFD_RELOC_PJ_CODE_DIR32 BFD_RELOC_PJ_CODE_REL16 — : BFD_RELOC_PJ_CODE_REL16 BFD_RELOC_PJ_CODE_REL32 — : BFD_RELOC_PJ_CODE_REL32 Picojava relocs. Not all of these appear in object files. BFD_RELOC_PPC_B26 — : BFD_RELOC_PPC_B26 BFD_RELOC_PPC_BA26 — : BFD_RELOC_PPC_BA26 BFD_RELOC_PPC_TOC16 — : BFD_RELOC_PPC_TOC16 BFD_RELOC_PPC_B16 — : BFD_RELOC_PPC_B16 BFD_RELOC_PPC_B16_BRTAKEN — : BFD_RELOC_PPC_B16_BRTAKEN BFD_RELOC_PPC_B16_BRNTAKEN — : BFD_RELOC_PPC_B16_BRNTAKEN BFD_RELOC_PPC_BA16 — : BFD_RELOC_PPC_BA16 BFD_RELOC_PPC_BA16_BRTAKEN — : BFD_RELOC_PPC_BA16_BRTAKEN BFD_RELOC_PPC_BA16_BRNTAKEN — : BFD_RELOC_PPC_BA16_BRNTAKEN BFD_RELOC_PPC_COPY — : BFD_RELOC_PPC_COPY BFD_RELOC_PPC_GLOB_DAT — : BFD_RELOC_PPC_GLOB_DAT BFD_RELOC_PPC_JMP_SLOT — : BFD_RELOC_PPC_JMP_SLOT BFD_RELOC_PPC_RELATIVE — : BFD_RELOC_PPC_RELATIVE BFD_RELOC_PPC_LOCAL24PC — : BFD_RELOC_PPC_LOCAL24PC BFD_RELOC_PPC_EMB_NADDR32 — : BFD_RELOC_PPC_EMB_NADDR32 BFD_RELOC_PPC_EMB_NADDR16 — : BFD_RELOC_PPC_EMB_NADDR16 BFD_RELOC_PPC_EMB_NADDR16_LO — : BFD_RELOC_PPC_EMB_NADDR16_LO BFD_RELOC_PPC_EMB_NADDR16_HI — : BFD_RELOC_PPC_EMB_NADDR16_HI BFD_RELOC_PPC_EMB_NADDR16_HA — : BFD_RELOC_PPC_EMB_NADDR16_HA BFD_RELOC_PPC_EMB_SDAI16 — : BFD_RELOC_PPC_EMB_SDAI16 BFD_RELOC_PPC_EMB_SDA2I16 — : BFD_RELOC_PPC_EMB_SDA2I16 BFD_RELOC_PPC_EMB_SDA2REL — : BFD_RELOC_PPC_EMB_SDA2REL BFD_RELOC_PPC_EMB_SDA21 — : BFD_RELOC_PPC_EMB_SDA21 BFD_RELOC_PPC_EMB_MRKREF — : BFD_RELOC_PPC_EMB_MRKREF BFD_RELOC_PPC_EMB_RELSEC16 — : BFD_RELOC_PPC_EMB_RELSEC16 BFD_RELOC_PPC_EMB_RELST_LO — : BFD_RELOC_PPC_EMB_RELST_LO BFD_RELOC_PPC_EMB_RELST_HI — : BFD_RELOC_PPC_EMB_RELST_HI BFD_RELOC_PPC_EMB_RELST_HA — : BFD_RELOC_PPC_EMB_RELST_HA BFD_RELOC_PPC_EMB_BIT_FLD — : BFD_RELOC_PPC_EMB_BIT_FLD BFD_RELOC_PPC_EMB_RELSDA — : BFD_RELOC_PPC_EMB_RELSDA BFD_RELOC_PPC64_HIGHER — : BFD_RELOC_PPC64_HIGHER BFD_RELOC_PPC64_HIGHER_S — : BFD_RELOC_PPC64_HIGHER_S BFD_RELOC_PPC64_HIGHEST — : BFD_RELOC_PPC64_HIGHEST BFD_RELOC_PPC64_HIGHEST_S — : BFD_RELOC_PPC64_HIGHEST_S BFD_RELOC_PPC64_TOC16_LO — : BFD_RELOC_PPC64_TOC16_LO BFD_RELOC_PPC64_TOC16_HI — : BFD_RELOC_PPC64_TOC16_HI BFD_RELOC_PPC64_TOC16_HA — : BFD_RELOC_PPC64_TOC16_HA BFD_RELOC_PPC64_TOC — : BFD_RELOC_PPC64_TOC BFD_RELOC_PPC64_PLTGOT16 — : BFD_RELOC_PPC64_PLTGOT16 BFD_RELOC_PPC64_PLTGOT16_LO — : BFD_RELOC_PPC64_PLTGOT16_LO BFD_RELOC_PPC64_PLTGOT16_HI — : BFD_RELOC_PPC64_PLTGOT16_HI BFD_RELOC_PPC64_PLTGOT16_HA — : BFD_RELOC_PPC64_PLTGOT16_HA BFD_RELOC_PPC64_ADDR16_DS — : BFD_RELOC_PPC64_ADDR16_DS BFD_RELOC_PPC64_ADDR16_LO_DS — : BFD_RELOC_PPC64_ADDR16_LO_DS BFD_RELOC_PPC64_GOT16_DS — : BFD_RELOC_PPC64_GOT16_DS BFD_RELOC_PPC64_GOT16_LO_DS — : BFD_RELOC_PPC64_GOT16_LO_DS BFD_RELOC_PPC64_PLT16_LO_DS — : BFD_RELOC_PPC64_PLT16_LO_DS BFD_RELOC_PPC64_SECTOFF_DS — : BFD_RELOC_PPC64_SECTOFF_DS BFD_RELOC_PPC64_SECTOFF_LO_DS — : BFD_RELOC_PPC64_SECTOFF_LO_DS BFD_RELOC_PPC64_TOC16_DS — : BFD_RELOC_PPC64_TOC16_DS BFD_RELOC_PPC64_TOC16_LO_DS — : BFD_RELOC_PPC64_TOC16_LO_DS BFD_RELOC_PPC64_PLTGOT16_DS — : BFD_RELOC_PPC64_PLTGOT16_DS BFD_RELOC_PPC64_PLTGOT16_LO_DS — : BFD_RELOC_PPC64_PLTGOT16_LO_DS Power(rs6000) and PowerPC relocations. BFD_RELOC_PPC_TLS — : BFD_RELOC_PPC_TLS BFD_RELOC_PPC_DTPMOD — : BFD_RELOC_PPC_DTPMOD BFD_RELOC_PPC_TPREL16 — : BFD_RELOC_PPC_TPREL16 BFD_RELOC_PPC_TPREL16_LO — : BFD_RELOC_PPC_TPREL16_LO BFD_RELOC_PPC_TPREL16_HI — : BFD_RELOC_PPC_TPREL16_HI BFD_RELOC_PPC_TPREL16_HA — : BFD_RELOC_PPC_TPREL16_HA BFD_RELOC_PPC_TPREL — : BFD_RELOC_PPC_TPREL BFD_RELOC_PPC_DTPREL16 — : BFD_RELOC_PPC_DTPREL16 BFD_RELOC_PPC_DTPREL16_LO — : BFD_RELOC_PPC_DTPREL16_LO BFD_RELOC_PPC_DTPREL16_HI — : BFD_RELOC_PPC_DTPREL16_HI BFD_RELOC_PPC_DTPREL16_HA — : BFD_RELOC_PPC_DTPREL16_HA BFD_RELOC_PPC_DTPREL — : BFD_RELOC_PPC_DTPREL BFD_RELOC_PPC_GOT_TLSGD16 — : BFD_RELOC_PPC_GOT_TLSGD16 BFD_RELOC_PPC_GOT_TLSGD16_LO — : BFD_RELOC_PPC_GOT_TLSGD16_LO BFD_RELOC_PPC_GOT_TLSGD16_HI — : BFD_RELOC_PPC_GOT_TLSGD16_HI BFD_RELOC_PPC_GOT_TLSGD16_HA — : BFD_RELOC_PPC_GOT_TLSGD16_HA BFD_RELOC_PPC_GOT_TLSLD16 — : BFD_RELOC_PPC_GOT_TLSLD16 BFD_RELOC_PPC_GOT_TLSLD16_LO — : BFD_RELOC_PPC_GOT_TLSLD16_LO BFD_RELOC_PPC_GOT_TLSLD16_HI — : BFD_RELOC_PPC_GOT_TLSLD16_HI BFD_RELOC_PPC_GOT_TLSLD16_HA — : BFD_RELOC_PPC_GOT_TLSLD16_HA BFD_RELOC_PPC_GOT_TPREL16 — : BFD_RELOC_PPC_GOT_TPREL16 BFD_RELOC_PPC_GOT_TPREL16_LO — : BFD_RELOC_PPC_GOT_TPREL16_LO BFD_RELOC_PPC_GOT_TPREL16_HI — : BFD_RELOC_PPC_GOT_TPREL16_HI BFD_RELOC_PPC_GOT_TPREL16_HA — : BFD_RELOC_PPC_GOT_TPREL16_HA BFD_RELOC_PPC_GOT_DTPREL16 — : BFD_RELOC_PPC_GOT_DTPREL16 BFD_RELOC_PPC_GOT_DTPREL16_LO — : BFD_RELOC_PPC_GOT_DTPREL16_LO BFD_RELOC_PPC_GOT_DTPREL16_HI — : BFD_RELOC_PPC_GOT_DTPREL16_HI BFD_RELOC_PPC_GOT_DTPREL16_HA — : BFD_RELOC_PPC_GOT_DTPREL16_HA BFD_RELOC_PPC64_TPREL16_DS — : BFD_RELOC_PPC64_TPREL16_DS BFD_RELOC_PPC64_TPREL16_LO_DS — : BFD_RELOC_PPC64_TPREL16_LO_DS BFD_RELOC_PPC64_TPREL16_HIGHER — : BFD_RELOC_PPC64_TPREL16_HIGHER BFD_RELOC_PPC64_TPREL16_HIGHERA — : BFD_RELOC_PPC64_TPREL16_HIGHERA BFD_RELOC_PPC64_TPREL16_HIGHEST — : BFD_RELOC_PPC64_TPREL16_HIGHEST BFD_RELOC_PPC64_TPREL16_HIGHESTA — : BFD_RELOC_PPC64_TPREL16_HIGHESTA BFD_RELOC_PPC64_DTPREL16_DS — : BFD_RELOC_PPC64_DTPREL16_DS BFD_RELOC_PPC64_DTPREL16_LO_DS — : BFD_RELOC_PPC64_DTPREL16_LO_DS BFD_RELOC_PPC64_DTPREL16_HIGHER — : BFD_RELOC_PPC64_DTPREL16_HIGHER BFD_RELOC_PPC64_DTPREL16_HIGHERA — : BFD_RELOC_PPC64_DTPREL16_HIGHERA BFD_RELOC_PPC64_DTPREL16_HIGHEST — : BFD_RELOC_PPC64_DTPREL16_HIGHEST BFD_RELOC_PPC64_DTPREL16_HIGHESTA — : BFD_RELOC_PPC64_DTPREL16_HIGHESTA PowerPC and PowerPC64 thread-local storage relocations. BFD_RELOC_I370_D12 — : BFD_RELOC_I370_D12 IBM 370/390 relocations BFD_RELOC_CTOR — : BFD_RELOC_CTOR The type of reloc used to build a constructor table - at the momentprobably a 32 bit wide absolute relocation, but the target can choose.It generally does map to one of the other relocation types. BFD_RELOC_ARM_PCREL_BRANCH — : BFD_RELOC_ARM_PCREL_BRANCH ARM 26 bit pc-relative branch. The lowest two bits must be zero and arenot stored in the instruction. BFD_RELOC_ARM_PCREL_BLX — : BFD_RELOC_ARM_PCREL_BLX ARM 26 bit pc-relative branch. The lowest bit must be zero and isnot stored in the instruction. The 2nd lowest bit comes from a 1 bitfield in the instruction. BFD_RELOC_THUMB_PCREL_BLX — : BFD_RELOC_THUMB_PCREL_BLX Thumb 22 bit pc-relative branch. The lowest bit must be zero and isnot stored in the instruction. The 2nd lowest bit comes from a 1 bitfield in the instruction. BFD_RELOC_ARM_PCREL_CALL — : BFD_RELOC_ARM_PCREL_CALL ARM 26-bit pc-relative branch for an unconditional BL or BLX instruction. BFD_RELOC_ARM_PCREL_JUMP — : BFD_RELOC_ARM_PCREL_JUMP ARM 26-bit pc-relative branch for B or conditional BL instruction. BFD_RELOC_THUMB_PCREL_BRANCH7 — : BFD_RELOC_THUMB_PCREL_BRANCH7 BFD_RELOC_THUMB_PCREL_BRANCH9 — : BFD_RELOC_THUMB_PCREL_BRANCH9 BFD_RELOC_THUMB_PCREL_BRANCH12 — : BFD_RELOC_THUMB_PCREL_BRANCH12 BFD_RELOC_THUMB_PCREL_BRANCH20 — : BFD_RELOC_THUMB_PCREL_BRANCH20 BFD_RELOC_THUMB_PCREL_BRANCH23 — : BFD_RELOC_THUMB_PCREL_BRANCH23 BFD_RELOC_THUMB_PCREL_BRANCH25 — : BFD_RELOC_THUMB_PCREL_BRANCH25 Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches.The lowest bit must be zero and is not stored in the instruction.Note that the corresponding ELF R_ARM_THM_JUMPnn constant has an"nn" one smaller in all cases. Note further that BRANCH23corresponds to R_ARM_THM_CALL. BFD_RELOC_ARM_OFFSET_IMM — : BFD_RELOC_ARM_OFFSET_IMM 12-bit immediate offset, used in ARM-format ldr and str instructions. BFD_RELOC_ARM_THUMB_OFFSET — : BFD_RELOC_ARM_THUMB_OFFSET 5-bit immediate offset, used in Thumb-format ldr and str instructions. BFD_RELOC_ARM_TARGET1 — : BFD_RELOC_ARM_TARGET1 Pc-relative or absolute relocation depending on target. Used forentries in .init_array sections. BFD_RELOC_ARM_ROSEGREL32 — : BFD_RELOC_ARM_ROSEGREL32 Read-only segment base relative address. BFD_RELOC_ARM_SBREL32 — : BFD_RELOC_ARM_SBREL32 Data segment base relative address. BFD_RELOC_ARM_TARGET2 — : BFD_RELOC_ARM_TARGET2 This reloc is used for references to RTTI data from exception handlingtables. The actual definition depends on the target. It may be apc-relative or some form of GOT-indirect relocation. BFD_RELOC_ARM_PREL31 — : BFD_RELOC_ARM_PREL31 31-bit PC relative address. BFD_RELOC_ARM_MOVW — : BFD_RELOC_ARM_MOVW BFD_RELOC_ARM_MOVT — : BFD_RELOC_ARM_MOVT BFD_RELOC_ARM_MOVW_PCREL — : BFD_RELOC_ARM_MOVW_PCREL BFD_RELOC_ARM_MOVT_PCREL — : BFD_RELOC_ARM_MOVT_PCREL BFD_RELOC_ARM_THUMB_MOVW — : BFD_RELOC_ARM_THUMB_MOVW BFD_RELOC_ARM_THUMB_MOVT — : BFD_RELOC_ARM_THUMB_MOVT BFD_RELOC_ARM_THUMB_MOVW_PCREL — : BFD_RELOC_ARM_THUMB_MOVW_PCREL BFD_RELOC_ARM_THUMB_MOVT_PCREL — : BFD_RELOC_ARM_THUMB_MOVT_PCREL Low and High halfword relocations for MOVW and MOVT instructions. BFD_RELOC_ARM_JUMP_SLOT — : BFD_RELOC_ARM_JUMP_SLOT BFD_RELOC_ARM_GLOB_DAT — : BFD_RELOC_ARM_GLOB_DAT BFD_RELOC_ARM_GOT32 — : BFD_RELOC_ARM_GOT32 BFD_RELOC_ARM_PLT32 — : BFD_RELOC_ARM_PLT32 BFD_RELOC_ARM_RELATIVE — : BFD_RELOC_ARM_RELATIVE BFD_RELOC_ARM_GOTOFF — : BFD_RELOC_ARM_GOTOFF BFD_RELOC_ARM_GOTPC — : BFD_RELOC_ARM_GOTPC Relocations for setting up GOTs and PLTs for shared libraries. BFD_RELOC_ARM_TLS_GD32 — : BFD_RELOC_ARM_TLS_GD32 BFD_RELOC_ARM_TLS_LDO32 — : BFD_RELOC_ARM_TLS_LDO32 BFD_RELOC_ARM_TLS_LDM32 — : BFD_RELOC_ARM_TLS_LDM32 BFD_RELOC_ARM_TLS_DTPOFF32 — : BFD_RELOC_ARM_TLS_DTPOFF32 BFD_RELOC_ARM_TLS_DTPMOD32 — : BFD_RELOC_ARM_TLS_DTPMOD32 BFD_RELOC_ARM_TLS_TPOFF32 — : BFD_RELOC_ARM_TLS_TPOFF32 BFD_RELOC_ARM_TLS_IE32 — : BFD_RELOC_ARM_TLS_IE32 BFD_RELOC_ARM_TLS_LE32 — : BFD_RELOC_ARM_TLS_LE32 ARM thread-local storage relocations. BFD_RELOC_ARM_ALU_PC_G0_NC — : BFD_RELOC_ARM_ALU_PC_G0_NC BFD_RELOC_ARM_ALU_PC_G0 — : BFD_RELOC_ARM_ALU_PC_G0 BFD_RELOC_ARM_ALU_PC_G1_NC — : BFD_RELOC_ARM_ALU_PC_G1_NC BFD_RELOC_ARM_ALU_PC_G1 — : BFD_RELOC_ARM_ALU_PC_G1 BFD_RELOC_ARM_ALU_PC_G2 — : BFD_RELOC_ARM_ALU_PC_G2 BFD_RELOC_ARM_LDR_PC_G0 — : BFD_RELOC_ARM_LDR_PC_G0 BFD_RELOC_ARM_LDR_PC_G1 — : BFD_RELOC_ARM_LDR_PC_G1 BFD_RELOC_ARM_LDR_PC_G2 — : BFD_RELOC_ARM_LDR_PC_G2 BFD_RELOC_ARM_LDRS_PC_G0 — : BFD_RELOC_ARM_LDRS_PC_G0 BFD_RELOC_ARM_LDRS_PC_G1 — : BFD_RELOC_ARM_LDRS_PC_G1 BFD_RELOC_ARM_LDRS_PC_G2 — : BFD_RELOC_ARM_LDRS_PC_G2 BFD_RELOC_ARM_LDC_PC_G0 — : BFD_RELOC_ARM_LDC_PC_G0 BFD_RELOC_ARM_LDC_PC_G1 — : BFD_RELOC_ARM_LDC_PC_G1 BFD_RELOC_ARM_LDC_PC_G2 — : BFD_RELOC_ARM_LDC_PC_G2 BFD_RELOC_ARM_ALU_SB_G0_NC — : BFD_RELOC_ARM_ALU_SB_G0_NC BFD_RELOC_ARM_ALU_SB_G0 — : BFD_RELOC_ARM_ALU_SB_G0 BFD_RELOC_ARM_ALU_SB_G1_NC — : BFD_RELOC_ARM_ALU_SB_G1_NC BFD_RELOC_ARM_ALU_SB_G1 — : BFD_RELOC_ARM_ALU_SB_G1 BFD_RELOC_ARM_ALU_SB_G2 — : BFD_RELOC_ARM_ALU_SB_G2 BFD_RELOC_ARM_LDR_SB_G0 — : BFD_RELOC_ARM_LDR_SB_G0 BFD_RELOC_ARM_LDR_SB_G1 — : BFD_RELOC_ARM_LDR_SB_G1 BFD_RELOC_ARM_LDR_SB_G2 — : BFD_RELOC_ARM_LDR_SB_G2 BFD_RELOC_ARM_LDRS_SB_G0 — : BFD_RELOC_ARM_LDRS_SB_G0 BFD_RELOC_ARM_LDRS_SB_G1 — : BFD_RELOC_ARM_LDRS_SB_G1 BFD_RELOC_ARM_LDRS_SB_G2 — : BFD_RELOC_ARM_LDRS_SB_G2 BFD_RELOC_ARM_LDC_SB_G0 — : BFD_RELOC_ARM_LDC_SB_G0 BFD_RELOC_ARM_LDC_SB_G1 — : BFD_RELOC_ARM_LDC_SB_G1 BFD_RELOC_ARM_LDC_SB_G2 — : BFD_RELOC_ARM_LDC_SB_G2 ARM group relocations. BFD_RELOC_ARM_IMMEDIATE — : BFD_RELOC_ARM_IMMEDIATE BFD_RELOC_ARM_ADRL_IMMEDIATE — : BFD_RELOC_ARM_ADRL_IMMEDIATE BFD_RELOC_ARM_T32_IMMEDIATE — : BFD_RELOC_ARM_T32_IMMEDIATE BFD_RELOC_ARM_T32_ADD_IMM — : BFD_RELOC_ARM_T32_ADD_IMM BFD_RELOC_ARM_T32_IMM12 — : BFD_RELOC_ARM_T32_IMM12 BFD_RELOC_ARM_T32_ADD_PC12 — : BFD_RELOC_ARM_T32_ADD_PC12 BFD_RELOC_ARM_SHIFT_IMM — : BFD_RELOC_ARM_SHIFT_IMM BFD_RELOC_ARM_SMC — : BFD_RELOC_ARM_SMC BFD_RELOC_ARM_SWI — : BFD_RELOC_ARM_SWI BFD_RELOC_ARM_MULTI — : BFD_RELOC_ARM_MULTI BFD_RELOC_ARM_CP_OFF_IMM — : BFD_RELOC_ARM_CP_OFF_IMM BFD_RELOC_ARM_CP_OFF_IMM_S2 — : BFD_RELOC_ARM_CP_OFF_IMM_S2 BFD_RELOC_ARM_T32_CP_OFF_IMM — : BFD_RELOC_ARM_T32_CP_OFF_IMM BFD_RELOC_ARM_T32_CP_OFF_IMM_S2 — : BFD_RELOC_ARM_T32_CP_OFF_IMM_S2 BFD_RELOC_ARM_ADR_IMM — : BFD_RELOC_ARM_ADR_IMM BFD_RELOC_ARM_LDR_IMM — : BFD_RELOC_ARM_LDR_IMM BFD_RELOC_ARM_LITERAL — : BFD_RELOC_ARM_LITERAL BFD_RELOC_ARM_IN_POOL — : BFD_RELOC_ARM_IN_POOL BFD_RELOC_ARM_OFFSET_IMM8 — : BFD_RELOC_ARM_OFFSET_IMM8 BFD_RELOC_ARM_T32_OFFSET_U8 — : BFD_RELOC_ARM_T32_OFFSET_U8 BFD_RELOC_ARM_T32_OFFSET_IMM — : BFD_RELOC_ARM_T32_OFFSET_IMM BFD_RELOC_ARM_HWLITERAL — : BFD_RELOC_ARM_HWLITERAL BFD_RELOC_ARM_THUMB_ADD — : BFD_RELOC_ARM_THUMB_ADD BFD_RELOC_ARM_THUMB_IMM — : BFD_RELOC_ARM_THUMB_IMM BFD_RELOC_ARM_THUMB_SHIFT — : BFD_RELOC_ARM_THUMB_SHIFT These relocs are only used within the ARM assembler. They are not(at present) written to any object files. BFD_RELOC_SH_PCDISP8BY2 — : BFD_RELOC_SH_PCDISP8BY2 BFD_RELOC_SH_PCDISP12BY2 — : BFD_RELOC_SH_PCDISP12BY2 BFD_RELOC_SH_IMM3 — : BFD_RELOC_SH_IMM3 BFD_RELOC_SH_IMM3U — : BFD_RELOC_SH_IMM3U BFD_RELOC_SH_DISP12 — : BFD_RELOC_SH_DISP12 BFD_RELOC_SH_DISP12BY2 — : BFD_RELOC_SH_DISP12BY2 BFD_RELOC_SH_DISP12BY4 — : BFD_RELOC_SH_DISP12BY4 BFD_RELOC_SH_DISP12BY8 — : BFD_RELOC_SH_DISP12BY8 BFD_RELOC_SH_DISP20 — : BFD_RELOC_SH_DISP20 BFD_RELOC_SH_DISP20BY8 — : BFD_RELOC_SH_DISP20BY8 BFD_RELOC_SH_IMM4 — : BFD_RELOC_SH_IMM4 BFD_RELOC_SH_IMM4BY2 — : BFD_RELOC_SH_IMM4BY2 BFD_RELOC_SH_IMM4BY4 — : BFD_RELOC_SH_IMM4BY4 BFD_RELOC_SH_IMM8 — : BFD_RELOC_SH_IMM8 BFD_RELOC_SH_IMM8BY2 — : BFD_RELOC_SH_IMM8BY2 BFD_RELOC_SH_IMM8BY4 — : BFD_RELOC_SH_IMM8BY4 BFD_RELOC_SH_PCRELIMM8BY2 — : BFD_RELOC_SH_PCRELIMM8BY2 BFD_RELOC_SH_PCRELIMM8BY4 — : BFD_RELOC_SH_PCRELIMM8BY4 BFD_RELOC_SH_SWITCH16 — : BFD_RELOC_SH_SWITCH16 BFD_RELOC_SH_SWITCH32 — : BFD_RELOC_SH_SWITCH32 BFD_RELOC_SH_USES — : BFD_RELOC_SH_USES BFD_RELOC_SH_COUNT — : BFD_RELOC_SH_COUNT BFD_RELOC_SH_ALIGN — : BFD_RELOC_SH_ALIGN BFD_RELOC_SH_CODE — : BFD_RELOC_SH_CODE BFD_RELOC_SH_DATA — : BFD_RELOC_SH_DATA BFD_RELOC_SH_LABEL — : BFD_RELOC_SH_LABEL BFD_RELOC_SH_LOOP_START — : BFD_RELOC_SH_LOOP_START BFD_RELOC_SH_LOOP_END — : BFD_RELOC_SH_LOOP_END BFD_RELOC_SH_COPY — : BFD_RELOC_SH_COPY BFD_RELOC_SH_GLOB_DAT — : BFD_RELOC_SH_GLOB_DAT BFD_RELOC_SH_JMP_SLOT — : BFD_RELOC_SH_JMP_SLOT BFD_RELOC_SH_RELATIVE — : BFD_RELOC_SH_RELATIVE BFD_RELOC_SH_GOTPC — : BFD_RELOC_SH_GOTPC BFD_RELOC_SH_GOT_LOW16 — : BFD_RELOC_SH_GOT_LOW16 BFD_RELOC_SH_GOT_MEDLOW16 — : BFD_RELOC_SH_GOT_MEDLOW16 BFD_RELOC_SH_GOT_MEDHI16 — : BFD_RELOC_SH_GOT_MEDHI16 BFD_RELOC_SH_GOT_HI16 — : BFD_RELOC_SH_GOT_HI16 BFD_RELOC_SH_GOTPLT_LOW16 — : BFD_RELOC_SH_GOTPLT_LOW16 BFD_RELOC_SH_GOTPLT_MEDLOW16 — : BFD_RELOC_SH_GOTPLT_MEDLOW16 BFD_RELOC_SH_GOTPLT_MEDHI16 — : BFD_RELOC_SH_GOTPLT_MEDHI16 BFD_RELOC_SH_GOTPLT_HI16 — : BFD_RELOC_SH_GOTPLT_HI16 BFD_RELOC_SH_PLT_LOW16 — : BFD_RELOC_SH_PLT_LOW16 BFD_RELOC_SH_PLT_MEDLOW16 — : BFD_RELOC_SH_PLT_MEDLOW16 BFD_RELOC_SH_PLT_MEDHI16 — : BFD_RELOC_SH_PLT_MEDHI16 BFD_RELOC_SH_PLT_HI16 — : BFD_RELOC_SH_PLT_HI16 BFD_RELOC_SH_GOTOFF_LOW16 — : BFD_RELOC_SH_GOTOFF_LOW16 BFD_RELOC_SH_GOTOFF_MEDLOW16 — : BFD_RELOC_SH_GOTOFF_MEDLOW16 BFD_RELOC_SH_GOTOFF_MEDHI16 — : BFD_RELOC_SH_GOTOFF_MEDHI16 BFD_RELOC_SH_GOTOFF_HI16 — : BFD_RELOC_SH_GOTOFF_HI16 BFD_RELOC_SH_GOTPC_LOW16 — : BFD_RELOC_SH_GOTPC_LOW16 BFD_RELOC_SH_GOTPC_MEDLOW16 — : BFD_RELOC_SH_GOTPC_MEDLOW16 BFD_RELOC_SH_GOTPC_MEDHI16 — : BFD_RELOC_SH_GOTPC_MEDHI16 BFD_RELOC_SH_GOTPC_HI16 — : BFD_RELOC_SH_GOTPC_HI16 BFD_RELOC_SH_COPY64 — : BFD_RELOC_SH_COPY64 BFD_RELOC_SH_GLOB_DAT64 — : BFD_RELOC_SH_GLOB_DAT64 BFD_RELOC_SH_JMP_SLOT64 — : BFD_RELOC_SH_JMP_SLOT64 BFD_RELOC_SH_RELATIVE64 — : BFD_RELOC_SH_RELATIVE64 BFD_RELOC_SH_GOT10BY4 — : BFD_RELOC_SH_GOT10BY4 BFD_RELOC_SH_GOT10BY8 — : BFD_RELOC_SH_GOT10BY8 BFD_RELOC_SH_GOTPLT10BY4 — : BFD_RELOC_SH_GOTPLT10BY4 BFD_RELOC_SH_GOTPLT10BY8 — : BFD_RELOC_SH_GOTPLT10BY8 BFD_RELOC_SH_GOTPLT32 — : BFD_RELOC_SH_GOTPLT32 BFD_RELOC_SH_SHMEDIA_CODE — : BFD_RELOC_SH_SHMEDIA_CODE BFD_RELOC_SH_IMMU5 — : BFD_RELOC_SH_IMMU5 BFD_RELOC_SH_IMMS6 — : BFD_RELOC_SH_IMMS6 BFD_RELOC_SH_IMMS6BY32 — : BFD_RELOC_SH_IMMS6BY32 BFD_RELOC_SH_IMMU6 — : BFD_RELOC_SH_IMMU6 BFD_RELOC_SH_IMMS10 — : BFD_RELOC_SH_IMMS10 BFD_RELOC_SH_IMMS10BY2 — : BFD_RELOC_SH_IMMS10BY2 BFD_RELOC_SH_IMMS10BY4 — : BFD_RELOC_SH_IMMS10BY4 BFD_RELOC_SH_IMMS10BY8 — : BFD_RELOC_SH_IMMS10BY8 BFD_RELOC_SH_IMMS16 — : BFD_RELOC_SH_IMMS16 BFD_RELOC_SH_IMMU16 — : BFD_RELOC_SH_IMMU16 BFD_RELOC_SH_IMM_LOW16 — : BFD_RELOC_SH_IMM_LOW16 BFD_RELOC_SH_IMM_LOW16_PCREL — : BFD_RELOC_SH_IMM_LOW16_PCREL BFD_RELOC_SH_IMM_MEDLOW16 — : BFD_RELOC_SH_IMM_MEDLOW16 BFD_RELOC_SH_IMM_MEDLOW16_PCREL — : BFD_RELOC_SH_IMM_MEDLOW16_PCREL BFD_RELOC_SH_IMM_MEDHI16 — : BFD_RELOC_SH_IMM_MEDHI16 BFD_RELOC_SH_IMM_MEDHI16_PCREL — : BFD_RELOC_SH_IMM_MEDHI16_PCREL BFD_RELOC_SH_IMM_HI16 — : BFD_RELOC_SH_IMM_HI16 BFD_RELOC_SH_IMM_HI16_PCREL — : BFD_RELOC_SH_IMM_HI16_PCREL BFD_RELOC_SH_PT_16 — : BFD_RELOC_SH_PT_16 BFD_RELOC_SH_TLS_GD_32 — : BFD_RELOC_SH_TLS_GD_32 BFD_RELOC_SH_TLS_LD_32 — : BFD_RELOC_SH_TLS_LD_32 BFD_RELOC_SH_TLS_LDO_32 — : BFD_RELOC_SH_TLS_LDO_32 BFD_RELOC_SH_TLS_IE_32 — : BFD_RELOC_SH_TLS_IE_32 BFD_RELOC_SH_TLS_LE_32 — : BFD_RELOC_SH_TLS_LE_32 BFD_RELOC_SH_TLS_DTPMOD32 — : BFD_RELOC_SH_TLS_DTPMOD32 BFD_RELOC_SH_TLS_DTPOFF32 — : BFD_RELOC_SH_TLS_DTPOFF32 BFD_RELOC_SH_TLS_TPOFF32 — : BFD_RELOC_SH_TLS_TPOFF32 Renesas / SuperH SH relocs. Not all of these appear in object files. BFD_RELOC_ARC_B22_PCREL — : BFD_RELOC_ARC_B22_PCREL ARC Cores relocs.ARC 22 bit pc-relative branch. The lowest two bits must be zero and arenot stored in the instruction. The high 20 bits are installed in bits 26through 7 of the instruction. BFD_RELOC_ARC_B26 — : BFD_RELOC_ARC_B26 ARC 26 bit absolute branch. The lowest two bits must be zero and are notstored in the instruction. The high 24 bits are installed in bits 23through 0. BFD_RELOC_BFIN_16_IMM — : BFD_RELOC_BFIN_16_IMM ADI Blackfin 16 bit immediate absolute reloc. BFD_RELOC_BFIN_16_HIGH — : BFD_RELOC_BFIN_16_HIGH ADI Blackfin 16 bit immediate absolute reloc higher 16 bits. BFD_RELOC_BFIN_4_PCREL — : BFD_RELOC_BFIN_4_PCREL ADI Blackfin 'a' part of LSETUP. BFD_RELOC_BFIN_5_PCREL — : BFD_RELOC_BFIN_5_PCREL ADI Blackfin. BFD_RELOC_BFIN_16_LOW — : BFD_RELOC_BFIN_16_LOW ADI Blackfin 16 bit immediate absolute reloc lower 16 bits. BFD_RELOC_BFIN_10_PCREL — : BFD_RELOC_BFIN_10_PCREL ADI Blackfin. BFD_RELOC_BFIN_11_PCREL — : BFD_RELOC_BFIN_11_PCREL ADI Blackfin 'b' part of LSETUP. BFD_RELOC_BFIN_12_PCREL_JUMP — : BFD_RELOC_BFIN_12_PCREL_JUMP ADI Blackfin. BFD_RELOC_BFIN_12_PCREL_JUMP_S — : BFD_RELOC_BFIN_12_PCREL_JUMP_S ADI Blackfin Short jump, pcrel. BFD_RELOC_BFIN_24_PCREL_CALL_X — : BFD_RELOC_BFIN_24_PCREL_CALL_X ADI Blackfin Call.x not implemented. BFD_RELOC_BFIN_24_PCREL_JUMP_L — : BFD_RELOC_BFIN_24_PCREL_JUMP_L ADI Blackfin Long Jump pcrel. BFD_RELOC_BFIN_GOT17M4 — : BFD_RELOC_BFIN_GOT17M4 BFD_RELOC_BFIN_GOTHI — : BFD_RELOC_BFIN_GOTHI BFD_RELOC_BFIN_GOTLO — : BFD_RELOC_BFIN_GOTLO BFD_RELOC_BFIN_FUNCDESC — : BFD_RELOC_BFIN_FUNCDESC BFD_RELOC_BFIN_FUNCDESC_GOT17M4 — : BFD_RELOC_BFIN_FUNCDESC_GOT17M4 BFD_RELOC_BFIN_FUNCDESC_GOTHI — : BFD_RELOC_BFIN_FUNCDESC_GOTHI BFD_RELOC_BFIN_FUNCDESC_GOTLO — : BFD_RELOC_BFIN_FUNCDESC_GOTLO BFD_RELOC_BFIN_FUNCDESC_VALUE — : BFD_RELOC_BFIN_FUNCDESC_VALUE BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4 — : BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4 BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI — : BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO — : BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO BFD_RELOC_BFIN_GOTOFF17M4 — : BFD_RELOC_BFIN_GOTOFF17M4 BFD_RELOC_BFIN_GOTOFFHI — : BFD_RELOC_BFIN_GOTOFFHI BFD_RELOC_BFIN_GOTOFFLO — : BFD_RELOC_BFIN_GOTOFFLO ADI Blackfin FD-PIC relocations. BFD_RELOC_BFIN_GOT — : BFD_RELOC_BFIN_GOT ADI Blackfin GOT relocation. BFD_RELOC_BFIN_PLTPC — : BFD_RELOC_BFIN_PLTPC ADI Blackfin PLTPC relocation. BFD_ARELOC_BFIN_PUSH — : BFD_ARELOC_BFIN_PUSH ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_CONST — : BFD_ARELOC_BFIN_CONST ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_ADD — : BFD_ARELOC_BFIN_ADD ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_SUB — : BFD_ARELOC_BFIN_SUB ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_MULT — : BFD_ARELOC_BFIN_MULT ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_DIV — : BFD_ARELOC_BFIN_DIV ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_MOD — : BFD_ARELOC_BFIN_MOD ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_LSHIFT — : BFD_ARELOC_BFIN_LSHIFT ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_RSHIFT — : BFD_ARELOC_BFIN_RSHIFT ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_AND — : BFD_ARELOC_BFIN_AND ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_OR — : BFD_ARELOC_BFIN_OR ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_XOR — : BFD_ARELOC_BFIN_XOR ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_LAND — : BFD_ARELOC_BFIN_LAND ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_LOR — : BFD_ARELOC_BFIN_LOR ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_LEN — : BFD_ARELOC_BFIN_LEN ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_NEG — : BFD_ARELOC_BFIN_NEG ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_COMP — : BFD_ARELOC_BFIN_COMP ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_PAGE — : BFD_ARELOC_BFIN_PAGE ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_HWPAGE — : BFD_ARELOC_BFIN_HWPAGE ADI Blackfin arithmetic relocation. BFD_ARELOC_BFIN_ADDR — : BFD_ARELOC_BFIN_ADDR ADI Blackfin arithmetic relocation. BFD_RELOC_D10V_10_PCREL_R — : BFD_RELOC_D10V_10_PCREL_R Mitsubishi D10V relocs.This is a 10-bit reloc with the right 2 bitsassumed to be 0. BFD_RELOC_D10V_10_PCREL_L — : BFD_RELOC_D10V_10_PCREL_L Mitsubishi D10V relocs.This is a 10-bit reloc with the right 2 bitsassumed to be 0. This is the same as the previous relocexcept it is in the left container, i.e.,shifted left 15 bits. BFD_RELOC_D10V_18 — : BFD_RELOC_D10V_18 This is an 18-bit reloc with the right 2 bitsassumed to be 0. BFD_RELOC_D10V_18_PCREL — : BFD_RELOC_D10V_18_PCREL This is an 18-bit reloc with the right 2 bitsassumed to be 0. BFD_RELOC_D30V_6 — : BFD_RELOC_D30V_6 Mitsubishi D30V relocs.This is a 6-bit absolute reloc. BFD_RELOC_D30V_9_PCREL — : BFD_RELOC_D30V_9_PCREL This is a 6-bit pc-relative reloc withthe right 3 bits assumed to be 0. BFD_RELOC_D30V_9_PCREL_R — : BFD_RELOC_D30V_9_PCREL_R This is a 6-bit pc-relative reloc withthe right 3 bits assumed to be 0. Sameas the previous reloc but on the right sideof the container. BFD_RELOC_D30V_15 — : BFD_RELOC_D30V_15 This is a 12-bit absolute reloc with theright 3 bitsassumed to be 0. BFD_RELOC_D30V_15_PCREL — : BFD_RELOC_D30V_15_PCREL This is a 12-bit pc-relative reloc withthe right 3 bits assumed to be 0. BFD_RELOC_D30V_15_PCREL_R — : BFD_RELOC_D30V_15_PCREL_R This is a 12-bit pc-relative reloc withthe right 3 bits assumed to be 0. Sameas the previous reloc but on the right sideof the container. BFD_RELOC_D30V_21 — : BFD_RELOC_D30V_21 This is an 18-bit absolute reloc withthe right 3 bits assumed to be 0. BFD_RELOC_D30V_21_PCREL — : BFD_RELOC_D30V_21_PCREL This is an 18-bit pc-relative reloc withthe right 3 bits assumed to be 0. BFD_RELOC_D30V_21_PCREL_R — : BFD_RELOC_D30V_21_PCREL_R This is an 18-bit pc-relative reloc withthe right 3 bits assumed to be 0. Sameas the previous reloc but on the right sideof the container. BFD_RELOC_D30V_32 — : BFD_RELOC_D30V_32 This is a 32-bit absolute reloc. BFD_RELOC_D30V_32_PCREL — : BFD_RELOC_D30V_32_PCREL This is a 32-bit pc-relative reloc. BFD_RELOC_DLX_HI16_S — : BFD_RELOC_DLX_HI16_S DLX relocs BFD_RELOC_DLX_LO16 — : BFD_RELOC_DLX_LO16 DLX relocs BFD_RELOC_DLX_JMP26 — : BFD_RELOC_DLX_JMP26 DLX relocs BFD_RELOC_M32C_HI8 — : BFD_RELOC_M32C_HI8 BFD_RELOC_M32C_RL_JUMP — : BFD_RELOC_M32C_RL_JUMP BFD_RELOC_M32C_RL_1ADDR — : BFD_RELOC_M32C_RL_1ADDR BFD_RELOC_M32C_RL_2ADDR — : BFD_RELOC_M32C_RL_2ADDR Renesas M16C/M32C Relocations. BFD_RELOC_M32R_24 — : BFD_RELOC_M32R_24 Renesas M32R (formerly Mitsubishi M32R) relocs.This is a 24 bit absolute address. BFD_RELOC_M32R_10_PCREL — : BFD_RELOC_M32R_10_PCREL This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0. BFD_RELOC_M32R_18_PCREL — : BFD_RELOC_M32R_18_PCREL This is an 18-bit reloc with the right 2 bits assumed to be 0. BFD_RELOC_M32R_26_PCREL — : BFD_RELOC_M32R_26_PCREL This is a 26-bit reloc with the right 2 bits assumed to be 0. BFD_RELOC_M32R_HI16_ULO — : BFD_RELOC_M32R_HI16_ULO This is a 16-bit reloc containing the high 16 bits of an addressused when the lower 16 bits are treated as unsigned. BFD_RELOC_M32R_HI16_SLO — : BFD_RELOC_M32R_HI16_SLO This is a 16-bit reloc containing the high 16 bits of an addressused when the lower 16 bits are treated as signed. BFD_RELOC_M32R_LO16 — : BFD_RELOC_M32R_LO16 This is a 16-bit reloc containing the lower 16 bits of an address. BFD_RELOC_M32R_SDA16 — : BFD_RELOC_M32R_SDA16 This is a 16-bit reloc containing the small data area offset for use inadd3, load, and store instructions. BFD_RELOC_M32R_GOT24 — : BFD_RELOC_M32R_GOT24 BFD_RELOC_M32R_26_PLTREL — : BFD_RELOC_M32R_26_PLTREL BFD_RELOC_M32R_COPY — : BFD_RELOC_M32R_COPY BFD_RELOC_M32R_GLOB_DAT — : BFD_RELOC_M32R_GLOB_DAT BFD_RELOC_M32R_JMP_SLOT — : BFD_RELOC_M32R_JMP_SLOT BFD_RELOC_M32R_RELATIVE — : BFD_RELOC_M32R_RELATIVE BFD_RELOC_M32R_GOTOFF — : BFD_RELOC_M32R_GOTOFF BFD_RELOC_M32R_GOTOFF_HI_ULO — : BFD_RELOC_M32R_GOTOFF_HI_ULO BFD_RELOC_M32R_GOTOFF_HI_SLO — : BFD_RELOC_M32R_GOTOFF_HI_SLO BFD_RELOC_M32R_GOTOFF_LO — : BFD_RELOC_M32R_GOTOFF_LO BFD_RELOC_M32R_GOTPC24 — : BFD_RELOC_M32R_GOTPC24 BFD_RELOC_M32R_GOT16_HI_ULO — : BFD_RELOC_M32R_GOT16_HI_ULO BFD_RELOC_M32R_GOT16_HI_SLO — : BFD_RELOC_M32R_GOT16_HI_SLO BFD_RELOC_M32R_GOT16_LO — : BFD_RELOC_M32R_GOT16_LO BFD_RELOC_M32R_GOTPC_HI_ULO — : BFD_RELOC_M32R_GOTPC_HI_ULO BFD_RELOC_M32R_GOTPC_HI_SLO — : BFD_RELOC_M32R_GOTPC_HI_SLO BFD_RELOC_M32R_GOTPC_LO — : BFD_RELOC_M32R_GOTPC_LO For PIC. BFD_RELOC_V850_9_PCREL — : BFD_RELOC_V850_9_PCREL This is a 9-bit reloc BFD_RELOC_V850_22_PCREL — : BFD_RELOC_V850_22_PCREL This is a 22-bit reloc BFD_RELOC_V850_SDA_16_16_OFFSET — : BFD_RELOC_V850_SDA_16_16_OFFSET This is a 16 bit offset from the short data area pointer. BFD_RELOC_V850_SDA_15_16_OFFSET — : BFD_RELOC_V850_SDA_15_16_OFFSET This is a 16 bit offset (of which only 15 bits are used) from theshort data area pointer. BFD_RELOC_V850_ZDA_16_16_OFFSET — : BFD_RELOC_V850_ZDA_16_16_OFFSET This is a 16 bit offset from the zero data area pointer. BFD_RELOC_V850_ZDA_15_16_OFFSET — : BFD_RELOC_V850_ZDA_15_16_OFFSET This is a 16 bit offset (of which only 15 bits are used) from thezero data area pointer. BFD_RELOC_V850_TDA_6_8_OFFSET — : BFD_RELOC_V850_TDA_6_8_OFFSET This is an 8 bit offset (of which only 6 bits are used) from thetiny data area pointer. BFD_RELOC_V850_TDA_7_8_OFFSET — : BFD_RELOC_V850_TDA_7_8_OFFSET This is an 8bit offset (of which only 7 bits are used) from the tinydata area pointer. BFD_RELOC_V850_TDA_7_7_OFFSET — : BFD_RELOC_V850_TDA_7_7_OFFSET This is a 7 bit offset from the tiny data area pointer. BFD_RELOC_V850_TDA_16_16_OFFSET — : BFD_RELOC_V850_TDA_16_16_OFFSET This is a 16 bit offset from the tiny data area pointer. BFD_RELOC_V850_TDA_4_5_OFFSET — : BFD_RELOC_V850_TDA_4_5_OFFSET This is a 5 bit offset (of which only 4 bits are used) from the tinydata area pointer. BFD_RELOC_V850_TDA_4_4_OFFSET — : BFD_RELOC_V850_TDA_4_4_OFFSET This is a 4 bit offset from the tiny data area pointer. BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET — : BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET This is a 16 bit offset from the short data area pointer, with thebits placed non-contiguously in the instruction. BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET — : BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET This is a 16 bit offset from the zero data area pointer, with thebits placed non-contiguously in the instruction. BFD_RELOC_V850_CALLT_6_7_OFFSET — : BFD_RELOC_V850_CALLT_6_7_OFFSET This is a 6 bit offset from the call table base pointer. BFD_RELOC_V850_CALLT_16_16_OFFSET — : BFD_RELOC_V850_CALLT_16_16_OFFSET This is a 16 bit offset from the call table base pointer. BFD_RELOC_V850_LONGCALL — : BFD_RELOC_V850_LONGCALL Used for relaxing indirect function calls. BFD_RELOC_V850_LONGJUMP — : BFD_RELOC_V850_LONGJUMP Used for relaxing indirect jumps. BFD_RELOC_V850_ALIGN — : BFD_RELOC_V850_ALIGN Used to maintain alignment whilst relaxing. BFD_RELOC_V850_LO16_SPLIT_OFFSET — : BFD_RELOC_V850_LO16_SPLIT_OFFSET This is a variation of BFD_RELOC_LO16 that can be used in v850e ld.buinstructions. BFD_RELOC_MN10300_32_PCREL — : BFD_RELOC_MN10300_32_PCREL This is a 32bit pcrel reloc for the mn10300, offset by two bytes in theinstruction. BFD_RELOC_MN10300_16_PCREL — : BFD_RELOC_MN10300_16_PCREL This is a 16bit pcrel reloc for the mn10300, offset by two bytes in theinstruction. BFD_RELOC_TIC30_LDP — : BFD_RELOC_TIC30_LDP This is a 8bit DP reloc for the tms320c30, where the mostsignificant 8 bits of a 24 bit word are placed into the leastsignificant 8 bits of the opcode. BFD_RELOC_TIC54X_PARTLS7 — : BFD_RELOC_TIC54X_PARTLS7 This is a 7bit reloc for the tms320c54x, where the leastsignificant 7 bits of a 16 bit word are placed into the leastsignificant 7 bits of the opcode. BFD_RELOC_TIC54X_PARTMS9 — : BFD_RELOC_TIC54X_PARTMS9 This is a 9bit DP reloc for the tms320c54x, where the mostsignificant 9 bits of a 16 bit word are placed into the leastsignificant 9 bits of the opcode. BFD_RELOC_TIC54X_23 — : BFD_RELOC_TIC54X_23 This is an extended address 23-bit reloc for the tms320c54x. BFD_RELOC_TIC54X_16_OF_23 — : BFD_RELOC_TIC54X_16_OF_23 This is a 16-bit reloc for the tms320c54x, where the leastsignificant 16 bits of a 23-bit extended address are placed intothe opcode. BFD_RELOC_TIC54X_MS7_OF_23 — : BFD_RELOC_TIC54X_MS7_OF_23 This is a reloc for the tms320c54x, where the mostsignificant 7 bits of a 23-bit extended address are placed intothe opcode. BFD_RELOC_FR30_48 — : BFD_RELOC_FR30_48 This is a 48 bit reloc for the FR30 that stores 32 bits. BFD_RELOC_FR30_20 — : BFD_RELOC_FR30_20 This is a 32 bit reloc for the FR30 that stores 20 bits split up intotwo sections. BFD_RELOC_FR30_6_IN_4 — : BFD_RELOC_FR30_6_IN_4 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in4 bits. BFD_RELOC_FR30_8_IN_8 — : BFD_RELOC_FR30_8_IN_8 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offsetinto 8 bits. BFD_RELOC_FR30_9_IN_8 — : BFD_RELOC_FR30_9_IN_8 This is a 16 bit reloc for the FR30 that stores a 9 bit short offsetinto 8 bits. BFD_RELOC_FR30_10_IN_8 — : BFD_RELOC_FR30_10_IN_8 This is a 16 bit reloc for the FR30 that stores a 10 bit word offsetinto 8 bits. BFD_RELOC_FR30_9_PCREL — : BFD_RELOC_FR30_9_PCREL This is a 16 bit reloc for the FR30 that stores a 9 bit pc relativeshort offset into 8 bits. BFD_RELOC_FR30_12_PCREL — : BFD_RELOC_FR30_12_PCREL This is a 16 bit reloc for the FR30 that stores a 12 bit pc relativeshort offset into 11 bits. BFD_RELOC_MCORE_PCREL_IMM8BY4 — : BFD_RELOC_MCORE_PCREL_IMM8BY4 BFD_RELOC_MCORE_PCREL_IMM11BY2 — : BFD_RELOC_MCORE_PCREL_IMM11BY2 BFD_RELOC_MCORE_PCREL_IMM4BY2 — : BFD_RELOC_MCORE_PCREL_IMM4BY2 BFD_RELOC_MCORE_PCREL_32 — : BFD_RELOC_MCORE_PCREL_32 BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2 — : BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2 BFD_RELOC_MCORE_RVA — : BFD_RELOC_MCORE_RVA Motorola Mcore relocations. BFD_RELOC_MMIX_GETA — : BFD_RELOC_MMIX_GETA BFD_RELOC_MMIX_GETA_1 — : BFD_RELOC_MMIX_GETA_1 BFD_RELOC_MMIX_GETA_2 — : BFD_RELOC_MMIX_GETA_2 BFD_RELOC_MMIX_GETA_3 — : BFD_RELOC_MMIX_GETA_3 These are relocations for the GETA instruction. BFD_RELOC_MMIX_CBRANCH — : BFD_RELOC_MMIX_CBRANCH BFD_RELOC_MMIX_CBRANCH_J — : BFD_RELOC_MMIX_CBRANCH_J BFD_RELOC_MMIX_CBRANCH_1 — : BFD_RELOC_MMIX_CBRANCH_1 BFD_RELOC_MMIX_CBRANCH_2 — : BFD_RELOC_MMIX_CBRANCH_2 BFD_RELOC_MMIX_CBRANCH_3 — : BFD_RELOC_MMIX_CBRANCH_3 These are relocations for a conditional branch instruction. BFD_RELOC_MMIX_PUSHJ — : BFD_RELOC_MMIX_PUSHJ BFD_RELOC_MMIX_PUSHJ_1 — : BFD_RELOC_MMIX_PUSHJ_1 BFD_RELOC_MMIX_PUSHJ_2 — : BFD_RELOC_MMIX_PUSHJ_2 BFD_RELOC_MMIX_PUSHJ_3 — : BFD_RELOC_MMIX_PUSHJ_3 BFD_RELOC_MMIX_PUSHJ_STUBBABLE — : BFD_RELOC_MMIX_PUSHJ_STUBBABLE These are relocations for the PUSHJ instruction. BFD_RELOC_MMIX_JMP — : BFD_RELOC_MMIX_JMP BFD_RELOC_MMIX_JMP_1 — : BFD_RELOC_MMIX_JMP_1 BFD_RELOC_MMIX_JMP_2 — : BFD_RELOC_MMIX_JMP_2 BFD_RELOC_MMIX_JMP_3 — : BFD_RELOC_MMIX_JMP_3 These are relocations for the JMP instruction. BFD_RELOC_MMIX_ADDR19 — : BFD_RELOC_MMIX_ADDR19 This is a relocation for a relative address as in a GETA instruction ora branch. BFD_RELOC_MMIX_ADDR27 — : BFD_RELOC_MMIX_ADDR27 This is a relocation for a relative address as in a JMP instruction. BFD_RELOC_MMIX_REG_OR_BYTE — : BFD_RELOC_MMIX_REG_OR_BYTE This is a relocation for an instruction field that may be a generalregister or a value 0..255. BFD_RELOC_MMIX_REG — : BFD_RELOC_MMIX_REG This is a relocation for an instruction field that may be a generalregister. BFD_RELOC_MMIX_BASE_PLUS_OFFSET — : BFD_RELOC_MMIX_BASE_PLUS_OFFSET This is a relocation for two instruction fields holding a register andan offset, the equivalent of the relocation. BFD_RELOC_MMIX_LOCAL — : BFD_RELOC_MMIX_LOCAL This relocation is an assertion that the expression is not allocated asa global register. It does not modify contents. BFD_RELOC_AVR_7_PCREL — : BFD_RELOC_AVR_7_PCREL This is a 16 bit reloc for the AVR that stores 8 bit pc relativeshort offset into 7 bits. BFD_RELOC_AVR_13_PCREL — : BFD_RELOC_AVR_13_PCREL This is a 16 bit reloc for the AVR that stores 13 bit pc relativeshort offset into 12 bits. BFD_RELOC_AVR_16_PM — : BFD_RELOC_AVR_16_PM This is a 16 bit reloc for the AVR that stores 17 bit value (usuallyprogram memory address) into 16 bits. BFD_RELOC_AVR_LO8_LDI — : BFD_RELOC_AVR_LO8_LDI This is a 16 bit reloc for the AVR that stores 8 bit value (usuallydata memory address) into 8 bit immediate value of LDI insn. BFD_RELOC_AVR_HI8_LDI — : BFD_RELOC_AVR_HI8_LDI This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bitof data memory address) into 8 bit immediate value of LDI insn. BFD_RELOC_AVR_HH8_LDI — : BFD_RELOC_AVR_HH8_LDI This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bitof program memory address) into 8 bit immediate value of LDI insn. BFD_RELOC_AVR_MS8_LDI — : BFD_RELOC_AVR_MS8_LDI This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bitof 32 bit value) into 8 bit immediate value of LDI insn. BFD_RELOC_AVR_LO8_LDI_NEG — : BFD_RELOC_AVR_LO8_LDI_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value(usually data memory address) into 8 bit immediate value of SUBI insn. BFD_RELOC_AVR_HI8_LDI_NEG — : BFD_RELOC_AVR_HI8_LDI_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value(high 8 bit of data memory address) into 8 bit immediate value ofSUBI insn. BFD_RELOC_AVR_HH8_LDI_NEG — : BFD_RELOC_AVR_HH8_LDI_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value(most high 8 bit of program memory address) into 8 bit immediate valueof LDI or SUBI insn. BFD_RELOC_AVR_MS8_LDI_NEG — : BFD_RELOC_AVR_MS8_LDI_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (msbof 32 bit value) into 8 bit immediate value of LDI insn. BFD_RELOC_AVR_LO8_LDI_PM — : BFD_RELOC_AVR_LO8_LDI_PM This is a 16 bit reloc for the AVR that stores 8 bit value (usuallycommand address) into 8 bit immediate value of LDI insn. BFD_RELOC_AVR_LO8_LDI_GS — : BFD_RELOC_AVR_LO8_LDI_GS This is a 16 bit reloc for the AVR that stores 8 bit value(command address) into 8 bit immediate value of LDI insn. If the addressis beyond the 128k boundary, the linker inserts a jump stub for this relocin the lower 128k. BFD_RELOC_AVR_HI8_LDI_PM — : BFD_RELOC_AVR_HI8_LDI_PM This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bitof command address) into 8 bit immediate value of LDI insn. BFD_RELOC_AVR_HI8_LDI_GS — : BFD_RELOC_AVR_HI8_LDI_GS This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bitof command address) into 8 bit immediate value of LDI insn. If the addressis beyond the 128k boundary, the linker inserts a jump stub for this relocbelow 128k. BFD_RELOC_AVR_HH8_LDI_PM — : BFD_RELOC_AVR_HH8_LDI_PM This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bitof command address) into 8 bit immediate value of LDI insn. BFD_RELOC_AVR_LO8_LDI_PM_NEG — : BFD_RELOC_AVR_LO8_LDI_PM_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value(usually command address) into 8 bit immediate value of SUBI insn. BFD_RELOC_AVR_HI8_LDI_PM_NEG — : BFD_RELOC_AVR_HI8_LDI_PM_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value(high 8 bit of 16 bit command address) into 8 bit immediate valueof SUBI insn. BFD_RELOC_AVR_HH8_LDI_PM_NEG — : BFD_RELOC_AVR_HH8_LDI_PM_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value(high 6 bit of 22 bit command address) into 8 bit immediatevalue of SUBI insn. BFD_RELOC_AVR_CALL — : BFD_RELOC_AVR_CALL This is a 32 bit reloc for the AVR that stores 23 bit valueinto 22 bits. BFD_RELOC_AVR_LDI — : BFD_RELOC_AVR_LDI This is a 16 bit reloc for the AVR that stores all needed bitsfor absolute addressing with ldi with overflow check to linktime BFD_RELOC_AVR_6 — : BFD_RELOC_AVR_6 This is a 6 bit reloc for the AVR that stores offset for ldd/stdinstructions BFD_RELOC_AVR_6_ADIW — : BFD_RELOC_AVR_6_ADIW This is a 6 bit reloc for the AVR that stores offset for adiw/sbiwinstructions BFD_RELOC_390_12 — : BFD_RELOC_390_12 Direct 12 bit. BFD_RELOC_390_GOT12 — : BFD_RELOC_390_GOT12 12 bit GOT offset. BFD_RELOC_390_PLT32 — : BFD_RELOC_390_PLT32 32 bit PC relative PLT address. BFD_RELOC_390_COPY — : BFD_RELOC_390_COPY Copy symbol at runtime. BFD_RELOC_390_GLOB_DAT — : BFD_RELOC_390_GLOB_DAT Create GOT entry. BFD_RELOC_390_JMP_SLOT — : BFD_RELOC_390_JMP_SLOT Create PLT entry. BFD_RELOC_390_RELATIVE — : BFD_RELOC_390_RELATIVE Adjust by program base. BFD_RELOC_390_GOTPC — : BFD_RELOC_390_GOTPC 32 bit PC relative offset to GOT. BFD_RELOC_390_GOT16 — : BFD_RELOC_390_GOT16 16 bit GOT offset. BFD_RELOC_390_PC16DBL — : BFD_RELOC_390_PC16DBL PC relative 16 bit shifted by 1. BFD_RELOC_390_PLT16DBL — : BFD_RELOC_390_PLT16DBL 16 bit PC rel. PLT shifted by 1. BFD_RELOC_390_PC32DBL — : BFD_RELOC_390_PC32DBL PC relative 32 bit shifted by 1. BFD_RELOC_390_PLT32DBL — : BFD_RELOC_390_PLT32DBL 32 bit PC rel. PLT shifted by 1. BFD_RELOC_390_GOTPCDBL — : BFD_RELOC_390_GOTPCDBL 32 bit PC rel. GOT shifted by 1. BFD_RELOC_390_GOT64 — : BFD_RELOC_390_GOT64 64 bit GOT offset. BFD_RELOC_390_PLT64 — : BFD_RELOC_390_PLT64 64 bit PC relative PLT address. BFD_RELOC_390_GOTENT — : BFD_RELOC_390_GOTENT 32 bit rel. offset to GOT entry. BFD_RELOC_390_GOTOFF64 — : BFD_RELOC_390_GOTOFF64 64 bit offset to GOT. BFD_RELOC_390_GOTPLT12 — : BFD_RELOC_390_GOTPLT12 12-bit offset to symbol-entry within GOT, with PLT handling. BFD_RELOC_390_GOTPLT16 — : BFD_RELOC_390_GOTPLT16 16-bit offset to symbol-entry within GOT, with PLT handling. BFD_RELOC_390_GOTPLT32 — : BFD_RELOC_390_GOTPLT32 32-bit offset to symbol-entry within GOT, with PLT handling. BFD_RELOC_390_GOTPLT64 — : BFD_RELOC_390_GOTPLT64 64-bit offset to symbol-entry within GOT, with PLT handling. BFD_RELOC_390_GOTPLTENT — : BFD_RELOC_390_GOTPLTENT 32-bit rel. offset to symbol-entry within GOT, with PLT handling. BFD_RELOC_390_PLTOFF16 — : BFD_RELOC_390_PLTOFF16 16-bit rel. offset from the GOT to a PLT entry. BFD_RELOC_390_PLTOFF32 — : BFD_RELOC_390_PLTOFF32 32-bit rel. offset from the GOT to a PLT entry. BFD_RELOC_390_PLTOFF64 — : BFD_RELOC_390_PLTOFF64 64-bit rel. offset from the GOT to a PLT entry. BFD_RELOC_390_TLS_LOAD — : BFD_RELOC_390_TLS_LOAD BFD_RELOC_390_TLS_GDCALL — : BFD_RELOC_390_TLS_GDCALL BFD_RELOC_390_TLS_LDCALL — : BFD_RELOC_390_TLS_LDCALL BFD_RELOC_390_TLS_GD32 — : BFD_RELOC_390_TLS_GD32 BFD_RELOC_390_TLS_GD64 — : BFD_RELOC_390_TLS_GD64 BFD_RELOC_390_TLS_GOTIE12 — : BFD_RELOC_390_TLS_GOTIE12 BFD_RELOC_390_TLS_GOTIE32 — : BFD_RELOC_390_TLS_GOTIE32 BFD_RELOC_390_TLS_GOTIE64 — : BFD_RELOC_390_TLS_GOTIE64 BFD_RELOC_390_TLS_LDM32 — : BFD_RELOC_390_TLS_LDM32 BFD_RELOC_390_TLS_LDM64 — : BFD_RELOC_390_TLS_LDM64 BFD_RELOC_390_TLS_IE32 — : BFD_RELOC_390_TLS_IE32 BFD_RELOC_390_TLS_IE64 — : BFD_RELOC_390_TLS_IE64 BFD_RELOC_390_TLS_IEENT — : BFD_RELOC_390_TLS_IEENT BFD_RELOC_390_TLS_LE32 — : BFD_RELOC_390_TLS_LE32 BFD_RELOC_390_TLS_LE64 — : BFD_RELOC_390_TLS_LE64 BFD_RELOC_390_TLS_LDO32 — : BFD_RELOC_390_TLS_LDO32 BFD_RELOC_390_TLS_LDO64 — : BFD_RELOC_390_TLS_LDO64 BFD_RELOC_390_TLS_DTPMOD — : BFD_RELOC_390_TLS_DTPMOD BFD_RELOC_390_TLS_DTPOFF — : BFD_RELOC_390_TLS_DTPOFF BFD_RELOC_390_TLS_TPOFF — : BFD_RELOC_390_TLS_TPOFF s390 tls relocations. BFD_RELOC_390_20 — : BFD_RELOC_390_20 BFD_RELOC_390_GOT20 — : BFD_RELOC_390_GOT20 BFD_RELOC_390_GOTPLT20 — : BFD_RELOC_390_GOTPLT20 BFD_RELOC_390_TLS_GOTIE20 — : BFD_RELOC_390_TLS_GOTIE20 Long displacement extension. BFD_RELOC_SCORE_DUMMY1 — : BFD_RELOC_SCORE_DUMMY1 Score relocations BFD_RELOC_SCORE_GPREL15 — : BFD_RELOC_SCORE_GPREL15 Low 16 bit for load/store BFD_RELOC_SCORE_DUMMY2 — : BFD_RELOC_SCORE_DUMMY2 BFD_RELOC_SCORE_JMP — : BFD_RELOC_SCORE_JMP This is a 24-bit reloc with the right 1 bit assumed to be 0 BFD_RELOC_SCORE_BRANCH — : BFD_RELOC_SCORE_BRANCH This is a 19-bit reloc with the right 1 bit assumed to be 0 BFD_RELOC_SCORE16_JMP — : BFD_RELOC_SCORE16_JMP This is a 11-bit reloc with the right 1 bit assumed to be 0 BFD_RELOC_SCORE16_BRANCH — : BFD_RELOC_SCORE16_BRANCH This is a 8-bit reloc with the right 1 bit assumed to be 0 BFD_RELOC_SCORE_GOT15 — : BFD_RELOC_SCORE_GOT15 BFD_RELOC_SCORE_GOT_LO16 — : BFD_RELOC_SCORE_GOT_LO16 BFD_RELOC_SCORE_CALL15 — : BFD_RELOC_SCORE_CALL15 BFD_RELOC_SCORE_DUMMY_HI16 — : BFD_RELOC_SCORE_DUMMY_HI16 Undocumented Score relocs BFD_RELOC_IP2K_FR9 — : BFD_RELOC_IP2K_FR9 Scenix IP2K - 9-bit register number / data address BFD_RELOC_IP2K_BANK — : BFD_RELOC_IP2K_BANK Scenix IP2K - 4-bit register/data bank number BFD_RELOC_IP2K_ADDR16CJP — : BFD_RELOC_IP2K_ADDR16CJP Scenix IP2K - low 13 bits of instruction word address BFD_RELOC_IP2K_PAGE3 — : BFD_RELOC_IP2K_PAGE3 Scenix IP2K - high 3 bits of instruction word address BFD_RELOC_IP2K_LO8DATA — : BFD_RELOC_IP2K_LO8DATA BFD_RELOC_IP2K_HI8DATA — : BFD_RELOC_IP2K_HI8DATA BFD_RELOC_IP2K_EX8DATA — : BFD_RELOC_IP2K_EX8DATA Scenix IP2K - ext/low/high 8 bits of data address BFD_RELOC_IP2K_LO8INSN — : BFD_RELOC_IP2K_LO8INSN BFD_RELOC_IP2K_HI8INSN — : BFD_RELOC_IP2K_HI8INSN Scenix IP2K - low/high 8 bits of instruction word address BFD_RELOC_IP2K_PC_SKIP — : BFD_RELOC_IP2K_PC_SKIP Scenix IP2K - even/odd PC modifier to modify snb pcl.0 BFD_RELOC_IP2K_TEXT — : BFD_RELOC_IP2K_TEXT Scenix IP2K - 16 bit word address in text section. BFD_RELOC_IP2K_FR_OFFSET — : BFD_RELOC_IP2K_FR_OFFSET Scenix IP2K - 7-bit sp or dp offset BFD_RELOC_VPE4KMATH_DATA — : BFD_RELOC_VPE4KMATH_DATA BFD_RELOC_VPE4KMATH_INSN — : BFD_RELOC_VPE4KMATH_INSN Scenix VPE4K coprocessor - data/insn-space addressing BFD_RELOC_VTABLE_INHERIT — : BFD_RELOC_VTABLE_INHERIT BFD_RELOC_VTABLE_ENTRY — : BFD_RELOC_VTABLE_ENTRY These two relocations are used by the linker to determine which ofthe entries in a C++ virtual function table are actually used. Whenthe –gc-sections option is given, the linker will zero out the entriesthat are not used, so that the code for those functions need not beincluded in the output.VTABLE_INHERIT is a zero-space relocation used to describe to thelinker the inheritance tree of a C++ virtual function table. Therelocation's symbol should be the parent class' vtable, and therelocation should be located at the child vtable.VTABLE_ENTRY is a zero-space relocation that describes the use of avirtual function table entry. The reloc's symbol should refer to thetable of the class mentioned in the code. Off of that base, an offsetdescribes the entry that is being used. For Rela hosts, this offsetis stored in the reloc's addend. For Rel hosts, we are forced to putthis offset in the reloc's section offset. BFD_RELOC_IA64_IMM14 — : BFD_RELOC_IA64_IMM14 BFD_RELOC_IA64_IMM22 — : BFD_RELOC_IA64_IMM22 BFD_RELOC_IA64_IMM64 — : BFD_RELOC_IA64_IMM64 BFD_RELOC_IA64_DIR32MSB — : BFD_RELOC_IA64_DIR32MSB BFD_RELOC_IA64_DIR32LSB — : BFD_RELOC_IA64_DIR32LSB BFD_RELOC_IA64_DIR64MSB — : BFD_RELOC_IA64_DIR64MSB BFD_RELOC_IA64_DIR64LSB — : BFD_RELOC_IA64_DIR64LSB BFD_RELOC_IA64_GPREL22 — : BFD_RELOC_IA64_GPREL22 BFD_RELOC_IA64_GPREL64I — : BFD_RELOC_IA64_GPREL64I BFD_RELOC_IA64_GPREL32MSB — : BFD_RELOC_IA64_GPREL32MSB BFD_RELOC_IA64_GPREL32LSB — : BFD_RELOC_IA64_GPREL32LSB BFD_RELOC_IA64_GPREL64MSB — : BFD_RELOC_IA64_GPREL64MSB BFD_RELOC_IA64_GPREL64LSB — : BFD_RELOC_IA64_GPREL64LSB BFD_RELOC_IA64_LTOFF22 — : BFD_RELOC_IA64_LTOFF22 BFD_RELOC_IA64_LTOFF64I — : BFD_RELOC_IA64_LTOFF64I BFD_RELOC_IA64_PLTOFF22 — : BFD_RELOC_IA64_PLTOFF22 BFD_RELOC_IA64_PLTOFF64I — : BFD_RELOC_IA64_PLTOFF64I BFD_RELOC_IA64_PLTOFF64MSB — : BFD_RELOC_IA64_PLTOFF64MSB BFD_RELOC_IA64_PLTOFF64LSB — : BFD_RELOC_IA64_PLTOFF64LSB BFD_RELOC_IA64_FPTR64I — : BFD_RELOC_IA64_FPTR64I BFD_RELOC_IA64_FPTR32MSB — : BFD_RELOC_IA64_FPTR32MSB BFD_RELOC_IA64_FPTR32LSB — : BFD_RELOC_IA64_FPTR32LSB BFD_RELOC_IA64_FPTR64MSB — : BFD_RELOC_IA64_FPTR64MSB BFD_RELOC_IA64_FPTR64LSB — : BFD_RELOC_IA64_FPTR64LSB BFD_RELOC_IA64_PCREL21B — : BFD_RELOC_IA64_PCREL21B BFD_RELOC_IA64_PCREL21BI — : BFD_RELOC_IA64_PCREL21BI BFD_RELOC_IA64_PCREL21M — : BFD_RELOC_IA64_PCREL21M BFD_RELOC_IA64_PCREL21F — : BFD_RELOC_IA64_PCREL21F BFD_RELOC_IA64_PCREL22 — : BFD_RELOC_IA64_PCREL22 BFD_RELOC_IA64_PCREL60B — : BFD_RELOC_IA64_PCREL60B BFD_RELOC_IA64_PCREL64I — : BFD_RELOC_IA64_PCREL64I BFD_RELOC_IA64_PCREL32MSB — : BFD_RELOC_IA64_PCREL32MSB BFD_RELOC_IA64_PCREL32LSB — : BFD_RELOC_IA64_PCREL32LSB BFD_RELOC_IA64_PCREL64MSB — : BFD_RELOC_IA64_PCREL64MSB BFD_RELOC_IA64_PCREL64LSB — : BFD_RELOC_IA64_PCREL64LSB BFD_RELOC_IA64_LTOFF_FPTR22 — : BFD_RELOC_IA64_LTOFF_FPTR22 BFD_RELOC_IA64_LTOFF_FPTR64I — : BFD_RELOC_IA64_LTOFF_FPTR64I BFD_RELOC_IA64_LTOFF_FPTR32MSB — : BFD_RELOC_IA64_LTOFF_FPTR32MSB BFD_RELOC_IA64_LTOFF_FPTR32LSB — : BFD_RELOC_IA64_LTOFF_FPTR32LSB BFD_RELOC_IA64_LTOFF_FPTR64MSB — : BFD_RELOC_IA64_LTOFF_FPTR64MSB BFD_RELOC_IA64_LTOFF_FPTR64LSB — : BFD_RELOC_IA64_LTOFF_FPTR64LSB BFD_RELOC_IA64_SEGREL32MSB — : BFD_RELOC_IA64_SEGREL32MSB BFD_RELOC_IA64_SEGREL32LSB — : BFD_RELOC_IA64_SEGREL32LSB BFD_RELOC_IA64_SEGREL64MSB — : BFD_RELOC_IA64_SEGREL64MSB BFD_RELOC_IA64_SEGREL64LSB — : BFD_RELOC_IA64_SEGREL64LSB BFD_RELOC_IA64_SECREL32MSB — : BFD_RELOC_IA64_SECREL32MSB BFD_RELOC_IA64_SECREL32LSB — : BFD_RELOC_IA64_SECREL32LSB BFD_RELOC_IA64_SECREL64MSB — : BFD_RELOC_IA64_SECREL64MSB BFD_RELOC_IA64_SECREL64LSB — : BFD_RELOC_IA64_SECREL64LSB BFD_RELOC_IA64_REL32MSB — : BFD_RELOC_IA64_REL32MSB BFD_RELOC_IA64_REL32LSB — : BFD_RELOC_IA64_REL32LSB BFD_RELOC_IA64_REL64MSB — : BFD_RELOC_IA64_REL64MSB BFD_RELOC_IA64_REL64LSB — : BFD_RELOC_IA64_REL64LSB BFD_RELOC_IA64_LTV32MSB — : BFD_RELOC_IA64_LTV32MSB BFD_RELOC_IA64_LTV32LSB — : BFD_RELOC_IA64_LTV32LSB BFD_RELOC_IA64_LTV64MSB — : BFD_RELOC_IA64_LTV64MSB BFD_RELOC_IA64_LTV64LSB — : BFD_RELOC_IA64_LTV64LSB BFD_RELOC_IA64_IPLTMSB — : BFD_RELOC_IA64_IPLTMSB BFD_RELOC_IA64_IPLTLSB — : BFD_RELOC_IA64_IPLTLSB BFD_RELOC_IA64_COPY — : BFD_RELOC_IA64_COPY BFD_RELOC_IA64_LTOFF22X — : BFD_RELOC_IA64_LTOFF22X BFD_RELOC_IA64_LDXMOV — : BFD_RELOC_IA64_LDXMOV BFD_RELOC_IA64_TPREL14 — : BFD_RELOC_IA64_TPREL14 BFD_RELOC_IA64_TPREL22 — : BFD_RELOC_IA64_TPREL22 BFD_RELOC_IA64_TPREL64I — : BFD_RELOC_IA64_TPREL64I BFD_RELOC_IA64_TPREL64MSB — : BFD_RELOC_IA64_TPREL64MSB BFD_RELOC_IA64_TPREL64LSB — : BFD_RELOC_IA64_TPREL64LSB BFD_RELOC_IA64_LTOFF_TPREL22 — : BFD_RELOC_IA64_LTOFF_TPREL22 BFD_RELOC_IA64_DTPMOD64MSB — : BFD_RELOC_IA64_DTPMOD64MSB BFD_RELOC_IA64_DTPMOD64LSB — : BFD_RELOC_IA64_DTPMOD64LSB BFD_RELOC_IA64_LTOFF_DTPMOD22 — : BFD_RELOC_IA64_LTOFF_DTPMOD22 BFD_RELOC_IA64_DTPREL14 — : BFD_RELOC_IA64_DTPREL14 BFD_RELOC_IA64_DTPREL22 — : BFD_RELOC_IA64_DTPREL22 BFD_RELOC_IA64_DTPREL64I — : BFD_RELOC_IA64_DTPREL64I BFD_RELOC_IA64_DTPREL32MSB — : BFD_RELOC_IA64_DTPREL32MSB BFD_RELOC_IA64_DTPREL32LSB — : BFD_RELOC_IA64_DTPREL32LSB BFD_RELOC_IA64_DTPREL64MSB — : BFD_RELOC_IA64_DTPREL64MSB BFD_RELOC_IA64_DTPREL64LSB — : BFD_RELOC_IA64_DTPREL64LSB BFD_RELOC_IA64_LTOFF_DTPREL22 — : BFD_RELOC_IA64_LTOFF_DTPREL22 Intel IA64 Relocations. BFD_RELOC_M68HC11_HI8 — : BFD_RELOC_M68HC11_HI8 Motorola 68HC11 reloc.This is the 8 bit high part of an absolute address. BFD_RELOC_M68HC11_LO8 — : BFD_RELOC_M68HC11_LO8 Motorola 68HC11 reloc.This is the 8 bit low part of an absolute address. BFD_RELOC_M68HC11_3B — : BFD_RELOC_M68HC11_3B Motorola 68HC11 reloc.This is the 3 bit of a value. BFD_RELOC_M68HC11_RL_JUMP — : BFD_RELOC_M68HC11_RL_JUMP Motorola 68HC11 reloc.This reloc marks the beginning of a jump/call instruction.It is used for linker relaxation to correctly identify beginningof instruction and change some branches to use PC-relativeaddressing mode. BFD_RELOC_M68HC11_RL_GROUP — : BFD_RELOC_M68HC11_RL_GROUP Motorola 68HC11 reloc.This reloc marks a group of several instructions that gcc generatesand for which the linker relaxation pass can modify and/or removesome of them. BFD_RELOC_M68HC11_LO16 — : BFD_RELOC_M68HC11_LO16 Motorola 68HC11 reloc.This is the 16-bit lower part of an address. It is used for 'call'instruction to specify the symbol address without any specialtransformation (due to memory bank window). BFD_RELOC_M68HC11_PAGE — : BFD_RELOC_M68HC11_PAGE Motorola 68HC11 reloc.This is a 8-bit reloc that specifies the page number of an address.It is used by 'call' instruction to specify the page number ofthe symbol. BFD_RELOC_M68HC11_24 — : BFD_RELOC_M68HC11_24 Motorola 68HC11 reloc.This is a 24-bit reloc that represents the address with a 16-bitvalue and a 8-bit page number. The symbol address is transformedto follow the 16K memory bank of 68HC12 (seen as mapped in the window). BFD_RELOC_M68HC12_5B — : BFD_RELOC_M68HC12_5B Motorola 68HC12 reloc.This is the 5 bits of a value. BFD_RELOC_16C_NUM08 — : BFD_RELOC_16C_NUM08 BFD_RELOC_16C_NUM08_C — : BFD_RELOC_16C_NUM08_C BFD_RELOC_16C_NUM16 — : BFD_RELOC_16C_NUM16 BFD_RELOC_16C_NUM16_C — : BFD_RELOC_16C_NUM16_C BFD_RELOC_16C_NUM32 — : BFD_RELOC_16C_NUM32 BFD_RELOC_16C_NUM32_C — : BFD_RELOC_16C_NUM32_C BFD_RELOC_16C_DISP04 — : BFD_RELOC_16C_DISP04 BFD_RELOC_16C_DISP04_C — : BFD_RELOC_16C_DISP04_C BFD_RELOC_16C_DISP08 — : BFD_RELOC_16C_DISP08 BFD_RELOC_16C_DISP08_C — : BFD_RELOC_16C_DISP08_C BFD_RELOC_16C_DISP16 — : BFD_RELOC_16C_DISP16 BFD_RELOC_16C_DISP16_C — : BFD_RELOC_16C_DISP16_C BFD_RELOC_16C_DISP24 — : BFD_RELOC_16C_DISP24 BFD_RELOC_16C_DISP24_C — : BFD_RELOC_16C_DISP24_C BFD_RELOC_16C_DISP24a — : BFD_RELOC_16C_DISP24a BFD_RELOC_16C_DISP24a_C — : BFD_RELOC_16C_DISP24a_C BFD_RELOC_16C_REG04 — : BFD_RELOC_16C_REG04 BFD_RELOC_16C_REG04_C — : BFD_RELOC_16C_REG04_C BFD_RELOC_16C_REG04a — : BFD_RELOC_16C_REG04a BFD_RELOC_16C_REG04a_C — : BFD_RELOC_16C_REG04a_C BFD_RELOC_16C_REG14 — : BFD_RELOC_16C_REG14 BFD_RELOC_16C_REG14_C — : BFD_RELOC_16C_REG14_C BFD_RELOC_16C_REG16 — : BFD_RELOC_16C_REG16 BFD_RELOC_16C_REG16_C — : BFD_RELOC_16C_REG16_C BFD_RELOC_16C_REG20 — : BFD_RELOC_16C_REG20 BFD_RELOC_16C_REG20_C — : BFD_RELOC_16C_REG20_C BFD_RELOC_16C_ABS20 — : BFD_RELOC_16C_ABS20 BFD_RELOC_16C_ABS20_C — : BFD_RELOC_16C_ABS20_C BFD_RELOC_16C_ABS24 — : BFD_RELOC_16C_ABS24 BFD_RELOC_16C_ABS24_C — : BFD_RELOC_16C_ABS24_C BFD_RELOC_16C_IMM04 — : BFD_RELOC_16C_IMM04 BFD_RELOC_16C_IMM04_C — : BFD_RELOC_16C_IMM04_C BFD_RELOC_16C_IMM16 — : BFD_RELOC_16C_IMM16 BFD_RELOC_16C_IMM16_C — : BFD_RELOC_16C_IMM16_C BFD_RELOC_16C_IMM20 — : BFD_RELOC_16C_IMM20 BFD_RELOC_16C_IMM20_C — : BFD_RELOC_16C_IMM20_C BFD_RELOC_16C_IMM24 — : BFD_RELOC_16C_IMM24 BFD_RELOC_16C_IMM24_C — : BFD_RELOC_16C_IMM24_C BFD_RELOC_16C_IMM32 — : BFD_RELOC_16C_IMM32 BFD_RELOC_16C_IMM32_C — : BFD_RELOC_16C_IMM32_C NS CR16C Relocations. BFD_RELOC_CRX_REL4 — : BFD_RELOC_CRX_REL4 BFD_RELOC_CRX_REL8 — : BFD_RELOC_CRX_REL8 BFD_RELOC_CRX_REL8_CMP — : BFD_RELOC_CRX_REL8_CMP BFD_RELOC_CRX_REL16 — : BFD_RELOC_CRX_REL16 BFD_RELOC_CRX_REL24 — : BFD_RELOC_CRX_REL24 BFD_RELOC_CRX_REL32 — : BFD_RELOC_CRX_REL32 BFD_RELOC_CRX_REGREL12 — : BFD_RELOC_CRX_REGREL12 BFD_RELOC_CRX_REGREL22 — : BFD_RELOC_CRX_REGREL22 BFD_RELOC_CRX_REGREL28 — : BFD_RELOC_CRX_REGREL28 BFD_RELOC_CRX_REGREL32 — : BFD_RELOC_CRX_REGREL32 BFD_RELOC_CRX_ABS16 — : BFD_RELOC_CRX_ABS16 BFD_RELOC_CRX_ABS32 — : BFD_RELOC_CRX_ABS32 BFD_RELOC_CRX_NUM8 — : BFD_RELOC_CRX_NUM8 BFD_RELOC_CRX_NUM16 — : BFD_RELOC_CRX_NUM16 BFD_RELOC_CRX_NUM32 — : BFD_RELOC_CRX_NUM32 BFD_RELOC_CRX_IMM16 — : BFD_RELOC_CRX_IMM16 BFD_RELOC_CRX_IMM32 — : BFD_RELOC_CRX_IMM32 BFD_RELOC_CRX_SWITCH8 — : BFD_RELOC_CRX_SWITCH8 BFD_RELOC_CRX_SWITCH16 — : BFD_RELOC_CRX_SWITCH16 BFD_RELOC_CRX_SWITCH32 — : BFD_RELOC_CRX_SWITCH32 NS CRX Relocations. BFD_RELOC_CRIS_BDISP8 — : BFD_RELOC_CRIS_BDISP8 BFD_RELOC_CRIS_UNSIGNED_5 — : BFD_RELOC_CRIS_UNSIGNED_5 BFD_RELOC_CRIS_SIGNED_6 — : BFD_RELOC_CRIS_SIGNED_6 BFD_RELOC_CRIS_UNSIGNED_6 — : BFD_RELOC_CRIS_UNSIGNED_6 BFD_RELOC_CRIS_SIGNED_8 — : BFD_RELOC_CRIS_SIGNED_8 BFD_RELOC_CRIS_UNSIGNED_8 — : BFD_RELOC_CRIS_UNSIGNED_8 BFD_RELOC_CRIS_SIGNED_16 — : BFD_RELOC_CRIS_SIGNED_16 BFD_RELOC_CRIS_UNSIGNED_16 — : BFD_RELOC_CRIS_UNSIGNED_16 BFD_RELOC_CRIS_LAPCQ_OFFSET — : BFD_RELOC_CRIS_LAPCQ_OFFSET BFD_RELOC_CRIS_UNSIGNED_4 — : BFD_RELOC_CRIS_UNSIGNED_4 These relocs are only used within the CRIS assembler. They are not(at present) written to any object files. BFD_RELOC_CRIS_COPY — : BFD_RELOC_CRIS_COPY BFD_RELOC_CRIS_GLOB_DAT — : BFD_RELOC_CRIS_GLOB_DAT BFD_RELOC_CRIS_JUMP_SLOT — : BFD_RELOC_CRIS_JUMP_SLOT BFD_RELOC_CRIS_RELATIVE — : BFD_RELOC_CRIS_RELATIVE Relocs used in ELF shared libraries for CRIS. BFD_RELOC_CRIS_32_GOT — : BFD_RELOC_CRIS_32_GOT 32-bit offset to symbol-entry within GOT. BFD_RELOC_CRIS_16_GOT — : BFD_RELOC_CRIS_16_GOT 16-bit offset to symbol-entry within GOT. BFD_RELOC_CRIS_32_GOTPLT — : BFD_RELOC_CRIS_32_GOTPLT 32-bit offset to symbol-entry within GOT, with PLT handling. BFD_RELOC_CRIS_16_GOTPLT — : BFD_RELOC_CRIS_16_GOTPLT 16-bit offset to symbol-entry within GOT, with PLT handling. BFD_RELOC_CRIS_32_GOTREL — : BFD_RELOC_CRIS_32_GOTREL 32-bit offset to symbol, relative to GOT. BFD_RELOC_CRIS_32_PLT_GOTREL — : BFD_RELOC_CRIS_32_PLT_GOTREL 32-bit offset to symbol with PLT entry, relative to GOT. BFD_RELOC_CRIS_32_PLT_PCREL — : BFD_RELOC_CRIS_32_PLT_PCREL 32-bit offset to symbol with PLT entry, relative to this relocation. BFD_RELOC_860_COPY — : BFD_RELOC_860_COPY BFD_RELOC_860_GLOB_DAT — : BFD_RELOC_860_GLOB_DAT BFD_RELOC_860_JUMP_SLOT — : BFD_RELOC_860_JUMP_SLOT BFD_RELOC_860_RELATIVE — : BFD_RELOC_860_RELATIVE BFD_RELOC_860_PC26 — : BFD_RELOC_860_PC26 BFD_RELOC_860_PLT26 — : BFD_RELOC_860_PLT26 BFD_RELOC_860_PC16 — : BFD_RELOC_860_PC16 BFD_RELOC_860_LOW0 — : BFD_RELOC_860_LOW0 BFD_RELOC_860_SPLIT0 — : BFD_RELOC_860_SPLIT0 BFD_RELOC_860_LOW1 — : BFD_RELOC_860_LOW1 BFD_RELOC_860_SPLIT1 — : BFD_RELOC_860_SPLIT1 BFD_RELOC_860_LOW2 — : BFD_RELOC_860_LOW2 BFD_RELOC_860_SPLIT2 — : BFD_RELOC_860_SPLIT2 BFD_RELOC_860_LOW3 — : BFD_RELOC_860_LOW3 BFD_RELOC_860_LOGOT0 — : BFD_RELOC_860_LOGOT0 BFD_RELOC_860_SPGOT0 — : BFD_RELOC_860_SPGOT0 BFD_RELOC_860_LOGOT1 — : BFD_RELOC_860_LOGOT1 BFD_RELOC_860_SPGOT1 — : BFD_RELOC_860_SPGOT1 BFD_RELOC_860_LOGOTOFF0 — : BFD_RELOC_860_LOGOTOFF0 BFD_RELOC_860_SPGOTOFF0 — : BFD_RELOC_860_SPGOTOFF0 BFD_RELOC_860_LOGOTOFF1 — : BFD_RELOC_860_LOGOTOFF1 BFD_RELOC_860_SPGOTOFF1 — : BFD_RELOC_860_SPGOTOFF1 BFD_RELOC_860_LOGOTOFF2 — : BFD_RELOC_860_LOGOTOFF2 BFD_RELOC_860_LOGOTOFF3 — : BFD_RELOC_860_LOGOTOFF3 BFD_RELOC_860_LOPC — : BFD_RELOC_860_LOPC BFD_RELOC_860_HIGHADJ — : BFD_RELOC_860_HIGHADJ BFD_RELOC_860_HAGOT — : BFD_RELOC_860_HAGOT BFD_RELOC_860_HAGOTOFF — : BFD_RELOC_860_HAGOTOFF BFD_RELOC_860_HAPC — : BFD_RELOC_860_HAPC BFD_RELOC_860_HIGH — : BFD_RELOC_860_HIGH BFD_RELOC_860_HIGOT — : BFD_RELOC_860_HIGOT BFD_RELOC_860_HIGOTOFF — : BFD_RELOC_860_HIGOTOFF Intel i860 Relocations. BFD_RELOC_OPENRISC_ABS_26 — : BFD_RELOC_OPENRISC_ABS_26 BFD_RELOC_OPENRISC_REL_26 — : BFD_RELOC_OPENRISC_REL_26 OpenRISC Relocations. BFD_RELOC_H8_DIR16A8 — : BFD_RELOC_H8_DIR16A8 BFD_RELOC_H8_DIR16R8 — : BFD_RELOC_H8_DIR16R8 BFD_RELOC_H8_DIR24A8 — : BFD_RELOC_H8_DIR24A8 BFD_RELOC_H8_DIR24R8 — : BFD_RELOC_H8_DIR24R8 BFD_RELOC_H8_DIR32A16 — : BFD_RELOC_H8_DIR32A16 H8 elf Relocations. BFD_RELOC_XSTORMY16_REL_12 — : BFD_RELOC_XSTORMY16_REL_12 BFD_RELOC_XSTORMY16_12 — : BFD_RELOC_XSTORMY16_12 BFD_RELOC_XSTORMY16_24 — : BFD_RELOC_XSTORMY16_24 BFD_RELOC_XSTORMY16_FPTR16 — : BFD_RELOC_XSTORMY16_FPTR16 Sony Xstormy16 Relocations. BFD_RELOC_XC16X_PAG — : BFD_RELOC_XC16X_PAG BFD_RELOC_XC16X_POF — : BFD_RELOC_XC16X_POF BFD_RELOC_XC16X_SEG — : BFD_RELOC_XC16X_SEG BFD_RELOC_XC16X_SOF — : BFD_RELOC_XC16X_SOF Infineon Relocations. BFD_RELOC_VAX_GLOB_DAT — : BFD_RELOC_VAX_GLOB_DAT BFD_RELOC_VAX_JMP_SLOT — : BFD_RELOC_VAX_JMP_SLOT BFD_RELOC_VAX_RELATIVE — : BFD_RELOC_VAX_RELATIVE Relocations used by VAX ELF. BFD_RELOC_MT_PC16 — : BFD_RELOC_MT_PC16 Morpho MT - 16 bit immediate relocation. BFD_RELOC_MT_HI16 — : BFD_RELOC_MT_HI16 Morpho MT - Hi 16 bits of an address. BFD_RELOC_MT_LO16 — : BFD_RELOC_MT_LO16 Morpho MT - Low 16 bits of an address. BFD_RELOC_MT_GNU_VTINHERIT — : BFD_RELOC_MT_GNU_VTINHERIT Morpho MT - Used to tell the linker which vtable entries are used. BFD_RELOC_MT_GNU_VTENTRY — : BFD_RELOC_MT_GNU_VTENTRY Morpho MT - Used to tell the linker which vtable entries are used. BFD_RELOC_MT_PCINSN8 — : BFD_RELOC_MT_PCINSN8 Morpho MT - 8 bit immediate relocation. BFD_RELOC_MSP430_10_PCREL — : BFD_RELOC_MSP430_10_PCREL BFD_RELOC_MSP430_16_PCREL — : BFD_RELOC_MSP430_16_PCREL BFD_RELOC_MSP430_16 — : BFD_RELOC_MSP430_16 BFD_RELOC_MSP430_16_PCREL_BYTE — : BFD_RELOC_MSP430_16_PCREL_BYTE BFD_RELOC_MSP430_16_BYTE — : BFD_RELOC_MSP430_16_BYTE BFD_RELOC_MSP430_2X_PCREL — : BFD_RELOC_MSP430_2X_PCREL BFD_RELOC_MSP430_RL_PCREL — : BFD_RELOC_MSP430_RL_PCREL msp430 specific relocation codes BFD_RELOC_IQ2000_OFFSET_16 — : BFD_RELOC_IQ2000_OFFSET_16 BFD_RELOC_IQ2000_OFFSET_21 — : BFD_RELOC_IQ2000_OFFSET_21 BFD_RELOC_IQ2000_UHI16 — : BFD_RELOC_IQ2000_UHI16 IQ2000 Relocations. BFD_RELOC_XTENSA_RTLD — : BFD_RELOC_XTENSA_RTLD Special Xtensa relocation used only by PLT entries in ELF sharedobjects to indicate that the runtime linker should set the valueto one of its own internal functions or data structures. BFD_RELOC_XTENSA_GLOB_DAT — : BFD_RELOC_XTENSA_GLOB_DAT BFD_RELOC_XTENSA_JMP_SLOT — : BFD_RELOC_XTENSA_JMP_SLOT BFD_RELOC_XTENSA_RELATIVE — : BFD_RELOC_XTENSA_RELATIVE Xtensa relocations for ELF shared objects. BFD_RELOC_XTENSA_PLT — : BFD_RELOC_XTENSA_PLT Xtensa relocation used in ELF object files for symbols that may requirePLT entries. Otherwise, this is just a generic 32-bit relocation. BFD_RELOC_XTENSA_DIFF8 — : BFD_RELOC_XTENSA_DIFF8 BFD_RELOC_XTENSA_DIFF16 — : BFD_RELOC_XTENSA_DIFF16 BFD_RELOC_XTENSA_DIFF32 — : BFD_RELOC_XTENSA_DIFF32 Xtensa relocations to mark the difference of two local symbols.These are only needed to support linker relaxation and can be ignoredwhen not relaxing. The field is set to the value of the differenceassuming no relaxation. The relocation encodes the position of thefirst symbol so the linker can determine whether to adjust the fieldvalue. BFD_RELOC_XTENSA_SLOT0_OP — : BFD_RELOC_XTENSA_SLOT0_OP BFD_RELOC_XTENSA_SLOT1_OP — : BFD_RELOC_XTENSA_SLOT1_OP BFD_RELOC_XTENSA_SLOT2_OP — : BFD_RELOC_XTENSA_SLOT2_OP BFD_RELOC_XTENSA_SLOT3_OP — : BFD_RELOC_XTENSA_SLOT3_OP BFD_RELOC_XTENSA_SLOT4_OP — : BFD_RELOC_XTENSA_SLOT4_OP BFD_RELOC_XTENSA_SLOT5_OP — : BFD_RELOC_XTENSA_SLOT5_OP BFD_RELOC_XTENSA_SLOT6_OP — : BFD_RELOC_XTENSA_SLOT6_OP BFD_RELOC_XTENSA_SLOT7_OP — : BFD_RELOC_XTENSA_SLOT7_OP BFD_RELOC_XTENSA_SLOT8_OP — : BFD_RELOC_XTENSA_SLOT8_OP BFD_RELOC_XTENSA_SLOT9_OP — : BFD_RELOC_XTENSA_SLOT9_OP BFD_RELOC_XTENSA_SLOT10_OP — : BFD_RELOC_XTENSA_SLOT10_OP BFD_RELOC_XTENSA_SLOT11_OP — : BFD_RELOC_XTENSA_SLOT11_OP BFD_RELOC_XTENSA_SLOT12_OP — : BFD_RELOC_XTENSA_SLOT12_OP BFD_RELOC_XTENSA_SLOT13_OP — : BFD_RELOC_XTENSA_SLOT13_OP BFD_RELOC_XTENSA_SLOT14_OP — : BFD_RELOC_XTENSA_SLOT14_OP Generic Xtensa relocations for instruction operands. Only the slotnumber is encoded in the relocation. The relocation applies to thelast PC-relative immediate operand, or if there are no PC-relativeimmediates, to the last immediate operand. BFD_RELOC_XTENSA_SLOT0_ALT — : BFD_RELOC_XTENSA_SLOT0_ALT BFD_RELOC_XTENSA_SLOT1_ALT — : BFD_RELOC_XTENSA_SLOT1_ALT BFD_RELOC_XTENSA_SLOT2_ALT — : BFD_RELOC_XTENSA_SLOT2_ALT BFD_RELOC_XTENSA_SLOT3_ALT — : BFD_RELOC_XTENSA_SLOT3_ALT BFD_RELOC_XTENSA_SLOT4_ALT — : BFD_RELOC_XTENSA_SLOT4_ALT BFD_RELOC_XTENSA_SLOT5_ALT — : BFD_RELOC_XTENSA_SLOT5_ALT BFD_RELOC_XTENSA_SLOT6_ALT — : BFD_RELOC_XTENSA_SLOT6_ALT BFD_RELOC_XTENSA_SLOT7_ALT — : BFD_RELOC_XTENSA_SLOT7_ALT BFD_RELOC_XTENSA_SLOT8_ALT — : BFD_RELOC_XTENSA_SLOT8_ALT BFD_RELOC_XTENSA_SLOT9_ALT — : BFD_RELOC_XTENSA_SLOT9_ALT BFD_RELOC_XTENSA_SLOT10_ALT — : BFD_RELOC_XTENSA_SLOT10_ALT BFD_RELOC_XTENSA_SLOT11_ALT — : BFD_RELOC_XTENSA_SLOT11_ALT BFD_RELOC_XTENSA_SLOT12_ALT — : BFD_RELOC_XTENSA_SLOT12_ALT BFD_RELOC_XTENSA_SLOT13_ALT — : BFD_RELOC_XTENSA_SLOT13_ALT BFD_RELOC_XTENSA_SLOT14_ALT — : BFD_RELOC_XTENSA_SLOT14_ALT Alternate Xtensa relocations. Only the slot is encoded in therelocation. The meaning of these relocations is opcode-specific. BFD_RELOC_XTENSA_OP0 — : BFD_RELOC_XTENSA_OP0 BFD_RELOC_XTENSA_OP1 — : BFD_RELOC_XTENSA_OP1 BFD_RELOC_XTENSA_OP2 — : BFD_RELOC_XTENSA_OP2 Xtensa relocations for backward compatibility. These have all beenreplaced by BFD_RELOC_XTENSA_SLOT0_OP. BFD_RELOC_XTENSA_ASM_EXPAND — : BFD_RELOC_XTENSA_ASM_EXPAND Xtensa relocation to mark that the assembler expanded theinstructions from an original target. The expansion size isencoded in the reloc size. BFD_RELOC_XTENSA_ASM_SIMPLIFY — : BFD_RELOC_XTENSA_ASM_SIMPLIFY Xtensa relocation to mark that the linker should simplifyassembler-expanded instructions. This is commonly usedinternally by the linker after analysis of aBFD_RELOC_XTENSA_ASM_EXPAND. BFD_RELOC_Z80_DISP8 — : BFD_RELOC_Z80_DISP8 8 bit signed offset in (ix+d) or (iy+d). BFD_RELOC_Z8K_DISP7 — : BFD_RELOC_Z8K_DISP7 DJNZ offset. BFD_RELOC_Z8K_CALLR — : BFD_RELOC_Z8K_CALLR CALR offset. BFD_RELOC_Z8K_IMM4L — : BFD_RELOC_Z8K_IMM4L 4 bit value. typedef enum bfd_reloc_code_real bfd_reloc_code_real_type; bfd_reloc_type_lookup bfd_reloc_type_lookupSynopsis reloc_howto_type *bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code); Description Return a pointer to a howto structure which, when invoked, will perform the relocation code on data from the architecture noted. bfd_default_reloc_type_lookup bfd_default_reloc_type_lookupSynopsis reloc_howto_type *bfd_default_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code); Description Provides a default relocation lookup routine for any architecture. bfd_get_reloc_code_name bfd_get_reloc_code_nameSynopsis const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code); Description Provides a printable name for the supplied relocation code. Useful mainly for printing error messages. bfd_generic_relax_section bfd_generic_relax_sectionSynopsis bfd_boolean bfd_generic_relax_section (bfd *abfd, asection *section, struct bfd_link_info *, bfd_boolean *); Description Provides default handling for relaxing for back ends which don't do relaxing. bfd_generic_gc_sections bfd_generic_gc_sectionsSynopsis bfd_boolean bfd_generic_gc_sections (bfd *, struct bfd_link_info *); Description Provides default handling for relaxing for back ends which don't do section gc – i.e., does nothing. bfd_generic_merge_sections bfd_generic_merge_sectionsSynopsis bfd_boolean bfd_generic_merge_sections (bfd *, struct bfd_link_info *); Description Provides default handling for SEC_MERGE section merging for back ends which don't have SEC_MERGE support – i.e., does nothing. bfd_generic_get_relocated_section_contents bfd_generic_get_relocated_section_contentsSynopsis bfd_byte *bfd_generic_get_relocated_section_contents (bfd *abfd, struct bfd_link_info *link_info, struct bfd_link_order *link_order, bfd_byte *data, bfd_boolean relocatable, asymbol **symbols); Description Provides default handling of relocation effort for back ends which can't be bothered to do it efficiently. Core files Core file functions Description These are functions pertaining to core files. bfd_core_file_failing_command bfd_core_file_failing_commandSynopsis const char *bfd_core_file_failing_command (bfd *abfd); Description Return a read-only string explaining which program was running when it failed and produced the core file abfd. bfd_core_file_failing_signal bfd_core_file_failing_signalSynopsis int bfd_core_file_failing_signal (bfd *abfd); Description Returns the signal number which caused the core dump which generated the file the BFD abfd is attached to. core_file_matches_executable_p core_file_matches_executable_pSynopsis bfd_boolean core_file_matches_executable_p (bfd *core_bfd, bfd *exec_bfd); Description Return TRUE if the core file attached to core_bfd was generated by a run of the executable file attached to exec_bfd, FALSE otherwise. generic_core_file_matches_executable_p generic_core_file_matches_executable_pSynopsis bfd_boolean generic_core_file_matches_executable_p (bfd *core_bfd, bfd *exec_bfd); Description Return TRUE if the core file attached to core_bfd was generated by a run of the executable file attached to exec_bfd. The match is based on executable basenames only. Note: When not able to determine the core file failing command or the executable name, we still return TRUE even though we're not sure that core file and executable match. This is to avoid generating a false warning in situations where we really don't know whether they match or not. Targets Description Each port of BFD to a different machine requires the creation of a target back end. All the back end provides to the root part of BFD is a structure containing pointers to functions which perform certain low level operations on files. BFD translates the applications's requests through a pointer into calls to the back end routines. When a file is opened with bfd_openr, its format and target are unknown. BFD uses various mechanisms to determine how to interpret the file. The operations performed are: Create a BFD by calling the internal routine_bfd_new_bfd, then call bfd_find_target with thetarget string supplied to bfd_openr and the new BFD pointer. If a null target string was provided to bfd_find_target,look up the environment variable GNUTARGET and usethat as the target string. If the target string is still NULL, or the target string isdefault, then use the first item in the target vectoras the target type, and set target_defaulted in the BFD tocause bfd_check_format to loop through all the targets.See . See . Otherwise, inspect the elements in the target vectorone by one, until a match on target name is found. When found,use it. Otherwise return the error bfd_error_invalid_target tobfd_openr. bfd_openr attempts to open the file usingbfd_open_file, and returns the BFD. Once the BFD has been opened and the target selected, the file format may be determined. This is done by calling bfd_check_format on the BFD with a suggested format. If target_defaulted has been set, each possible target type is tried to see if it recognizes the specified format. bfd_check_format returns TRUE when the caller guesses right. bfd_target Description This structure contains everything that BFD knows about a target. It includes things like its byte order, name, and which routines to call to do various operations. Every BFD points to a target structure with its xvec member. The macros below are used to dispatch to functions through the bfd_target vector. They are used in a number of macros further down in bfd.h, and are also used when calling various routines by hand inside the BFD implementation. The arglist argument must be parenthesized; it contains all the arguments to the called function. They make the documentation (more) unpleasant to read, so if someone wants to fix this and not break the above, please do. #define BFD_SEND(bfd, message, arglist) \ ((*((bfd)->xvec->message)) arglist) #ifdef DEBUG_BFD_SEND #undef BFD_SEND #define BFD_SEND(bfd, message, arglist) \ (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \ ((*((bfd)->xvec->message)) arglist) : \ (bfd_assert (__FILE__,__LINE__), NULL)) #endif For operations which index on the BFD format: #define BFD_SEND_FMT(bfd, message, arglist) \ (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) #ifdef DEBUG_BFD_SEND #undef BFD_SEND_FMT #define BFD_SEND_FMT(bfd, message, arglist) \ (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \ (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \ (bfd_assert (__FILE__,__LINE__), NULL)) #endif This is the structure which defines the type of BFD this is. The xvec member of the struct bfd itself points here. Each module that implements access to a different target under BFD, defines one of these. FIXME, these names should be rationalised with the names of the entry points which call them. Too bad we can't have one macro to define them both! enum bfd_flavour { bfd_target_unknown_flavour, bfd_target_aout_flavour, bfd_target_coff_flavour, bfd_target_ecoff_flavour, bfd_target_xcoff_flavour, bfd_target_elf_flavour, bfd_target_ieee_flavour, bfd_target_nlm_flavour, bfd_target_oasys_flavour, bfd_target_tekhex_flavour, bfd_target_srec_flavour, bfd_target_ihex_flavour, bfd_target_som_flavour, bfd_target_os9k_flavour, bfd_target_versados_flavour, bfd_target_msdos_flavour, bfd_target_ovax_flavour, bfd_target_evax_flavour, bfd_target_mmo_flavour, bfd_target_mach_o_flavour, bfd_target_pef_flavour, bfd_target_pef_xlib_flavour, bfd_target_sym_flavour }; enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN }; /* Forward declaration. */ typedef struct bfd_link_info _bfd_link_info; typedef struct bfd_target { /* Identifies the kind of target, e.g., SunOS4, Ultrix, etc. */ char *name; /* The "flavour" of a back end is a general indication about the contents of a file. */ enum bfd_flavour flavour; /* The order of bytes within the data area of a file. */ enum bfd_endian byteorder; /* The order of bytes within the header parts of a file. */ enum bfd_endian header_byteorder; /* A mask of all the flags which an executable may have set - from the set BFD_NO_FLAGS, HAS_RELOC, ...D_PAGED. */ flagword object_flags; /* A mask of all the flags which a section may have set - from the set SEC_NO_FLAGS, SEC_ALLOC, ...SET_NEVER_LOAD. */ flagword section_flags; /* The character normally found at the front of a symbol. (if any), perhaps `_'. */ char symbol_leading_char; /* The pad character for file names within an archive header. */ char ar_pad_char; /* The maximum number of characters in an archive header. */ unsigned short ar_max_namelen; /* Entries for byte swapping for data. These are different from the other entry points, since they don't take a BFD as the first argument. Certain other handlers could do the same. */ bfd_uint64_t (*bfd_getx64) (const void *); bfd_int64_t (*bfd_getx_signed_64) (const void *); void (*bfd_putx64) (bfd_uint64_t, void *); bfd_vma (*bfd_getx32) (const void *); bfd_signed_vma (*bfd_getx_signed_32) (const void *); void (*bfd_putx32) (bfd_vma, void *); bfd_vma (*bfd_getx16) (const void *); bfd_signed_vma (*bfd_getx_signed_16) (const void *); void (*bfd_putx16) (bfd_vma, void *); /* Byte swapping for the headers. */ bfd_uint64_t (*bfd_h_getx64) (const void *); bfd_int64_t (*bfd_h_getx_signed_64) (const void *); void (*bfd_h_putx64) (bfd_uint64_t, void *); bfd_vma (*bfd_h_getx32) (const void *); bfd_signed_vma (*bfd_h_getx_signed_32) (const void *); void (*bfd_h_putx32) (bfd_vma, void *); bfd_vma (*bfd_h_getx16) (const void *); bfd_signed_vma (*bfd_h_getx_signed_16) (const void *); void (*bfd_h_putx16) (bfd_vma, void *); /* Format dependent routines: these are vectors of entry points within the target vector structure, one for each format to check. */ /* Check the format of a file being read. Return a bfd_target * or zero. */ const struct bfd_target *(*_bfd_check_format[bfd_type_end]) (bfd *); /* Set the format of a file being written. */ bfd_boolean (*_bfd_set_format[bfd_type_end]) (bfd *); /* Write cached information into a file being written, at bfd_close. */ bfd_boolean (*_bfd_write_contents[bfd_type_end]) (bfd *); The general target vector. These vectors are initialized using the BFD_JUMP_TABLE macros. /* Generic entry points. */ #define BFD_JUMP_TABLE_GENERIC(NAME) \ NAME##_close_and_cleanup, \ NAME##_bfd_free_cached_info, \ NAME##_new_section_hook, \ NAME##_get_section_contents, \ NAME##_get_section_contents_in_window /* Called when the BFD is being closed to do any necessary cleanup. */ bfd_boolean (*_close_and_cleanup) (bfd *); /* Ask the BFD to free all cached information. */ bfd_boolean (*_bfd_free_cached_info) (bfd *); /* Called when a new section is created. */ bfd_boolean (*_new_section_hook) (bfd *, sec_ptr); /* Read the contents of a section. */ bfd_boolean (*_bfd_get_section_contents) (bfd *, sec_ptr, void *, file_ptr, bfd_size_type); bfd_boolean (*_bfd_get_section_contents_in_window) (bfd *, sec_ptr, bfd_window *, file_ptr, bfd_size_type); /* Entry points to copy private data. */ #define BFD_JUMP_TABLE_COPY(NAME) \ NAME##_bfd_copy_private_bfd_data, \ NAME##_bfd_merge_private_bfd_data, \ _bfd_generic_init_private_section_data, \ NAME##_bfd_copy_private_section_data, \ NAME##_bfd_copy_private_symbol_data, \ NAME##_bfd_copy_private_header_data, \ NAME##_bfd_set_private_flags, \ NAME##_bfd_print_private_bfd_data /* Called to copy BFD general private data from one object file to another. */ bfd_boolean (*_bfd_copy_private_bfd_data) (bfd *, bfd *); /* Called to merge BFD general private data from one object file to a common output file when linking. */ bfd_boolean (*_bfd_merge_private_bfd_data) (bfd *, bfd *); /* Called to initialize BFD private section data from one object file to another. */ #define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \ BFD_SEND (obfd, _bfd_init_private_section_data, (ibfd, isec, obfd, osec, link_info)) bfd_boolean (*_bfd_init_private_section_data) (bfd *, sec_ptr, bfd *, sec_ptr, struct bfd_link_info *); /* Called to copy BFD private section data from one object file to another. */ bfd_boolean (*_bfd_copy_private_section_data) (bfd *, sec_ptr, bfd *, sec_ptr); /* Called to copy BFD private symbol data from one symbol to another. */ bfd_boolean (*_bfd_copy_private_symbol_data) (bfd *, asymbol *, bfd *, asymbol *); /* Called to copy BFD private header data from one object file to another. */ bfd_boolean (*_bfd_copy_private_header_data) (bfd *, bfd *); /* Called to set private backend flags. */ bfd_boolean (*_bfd_set_private_flags) (bfd *, flagword); /* Called to print private BFD data. */ bfd_boolean (*_bfd_print_private_bfd_data) (bfd *, void *); /* Core file entry points. */ #define BFD_JUMP_TABLE_CORE(NAME) \ NAME##_core_file_failing_command, \ NAME##_core_file_failing_signal, \ NAME##_core_file_matches_executable_p char * (*_core_file_failing_command) (bfd *); int (*_core_file_failing_signal) (bfd *); bfd_boolean (*_core_file_matches_executable_p) (bfd *, bfd *); /* Archive entry points. */ #define BFD_JUMP_TABLE_ARCHIVE(NAME) \ NAME##_slurp_armap, \ NAME##_slurp_extended_name_table, \ NAME##_construct_extended_name_table, \ NAME##_truncate_arname, \ NAME##_write_armap, \ NAME##_read_ar_hdr, \ NAME##_openr_next_archived_file, \ NAME##_get_elt_at_index, \ NAME##_generic_stat_arch_elt, \ NAME##_update_armap_timestamp bfd_boolean (*_bfd_slurp_armap) (bfd *); bfd_boolean (*_bfd_slurp_extended_name_table) (bfd *); bfd_boolean (*_bfd_construct_extended_name_table) (bfd *, char **, bfd_size_type *, const char **); void (*_bfd_truncate_arname) (bfd *, const char *, char *); bfd_boolean (*write_armap) (bfd *, unsigned int, struct orl *, unsigned int, int); void * (*_bfd_read_ar_hdr_fn) (bfd *); bfd * (*openr_next_archived_file) (bfd *, bfd *); #define bfd_get_elt_at_index(b,i) BFD_SEND (b, _bfd_get_elt_at_index, (b,i)) bfd * (*_bfd_get_elt_at_index) (bfd *, symindex); int (*_bfd_stat_arch_elt) (bfd *, struct stat *); bfd_boolean (*_bfd_update_armap_timestamp) (bfd *); /* Entry points used for symbols. */ #define BFD_JUMP_TABLE_SYMBOLS(NAME) \ NAME##_get_symtab_upper_bound, \ NAME##_canonicalize_symtab, \ NAME##_make_empty_symbol, \ NAME##_print_symbol, \ NAME##_get_symbol_info, \ NAME##_bfd_is_local_label_name, \ NAME##_bfd_is_target_special_symbol, \ NAME##_get_lineno, \ NAME##_find_nearest_line, \ _bfd_generic_find_line, \ NAME##_find_inliner_info, \ NAME##_bfd_make_debug_symbol, \ NAME##_read_minisymbols, \ NAME##_minisymbol_to_symbol long (*_bfd_get_symtab_upper_bound) (bfd *); long (*_bfd_canonicalize_symtab) (bfd *, struct bfd_symbol **); struct bfd_symbol * (*_bfd_make_empty_symbol) (bfd *); void (*_bfd_print_symbol) (bfd *, void *, struct bfd_symbol *, bfd_print_symbol_type); #define bfd_print_symbol(b,p,s,e) BFD_SEND (b, _bfd_print_symbol, (b,p,s,e)) void (*_bfd_get_symbol_info) (bfd *, struct bfd_symbol *, symbol_info *); #define bfd_get_symbol_info(b,p,e) BFD_SEND (b, _bfd_get_symbol_info, (b,p,e)) bfd_boolean (*_bfd_is_local_label_name) (bfd *, const char *); bfd_boolean (*_bfd_is_target_special_symbol) (bfd *, asymbol *); alent * (*_get_lineno) (bfd *, struct bfd_symbol *); bfd_boolean (*_bfd_find_nearest_line) (bfd *, struct bfd_section *, struct bfd_symbol **, bfd_vma, const char **, const char **, unsigned int *); bfd_boolean (*_bfd_find_line) (bfd *, struct bfd_symbol **, struct bfd_symbol *, const char **, unsigned int *); bfd_boolean (*_bfd_find_inliner_info) (bfd *, const char **, const char **, unsigned int *); /* Back-door to allow format-aware applications to create debug symbols while using BFD for everything else. Currently used by the assembler when creating COFF files. */ asymbol * (*_bfd_make_debug_symbol) (bfd *, void *, unsigned long size); #define bfd_read_minisymbols(b, d, m, s) \ BFD_SEND (b, _read_minisymbols, (b, d, m, s)) long (*_read_minisymbols) (bfd *, bfd_boolean, void **, unsigned int *); #define bfd_minisymbol_to_symbol(b, d, m, f) \ BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f)) asymbol * (*_minisymbol_to_symbol) (bfd *, bfd_boolean, const void *, asymbol *); /* Routines for relocs. */ #define BFD_JUMP_TABLE_RELOCS(NAME) \ NAME##_get_reloc_upper_bound, \ NAME##_canonicalize_reloc, \ NAME##_bfd_reloc_type_lookup long (*_get_reloc_upper_bound) (bfd *, sec_ptr); long (*_bfd_canonicalize_reloc) (bfd *, sec_ptr, arelent **, struct bfd_symbol **); /* See documentation on reloc types. */ reloc_howto_type * (*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type); /* Routines used when writing an object file. */ #define BFD_JUMP_TABLE_WRITE(NAME) \ NAME##_set_arch_mach, \ NAME##_set_section_contents bfd_boolean (*_bfd_set_arch_mach) (bfd *, enum bfd_architecture, unsigned long); bfd_boolean (*_bfd_set_section_contents) (bfd *, sec_ptr, const void *, file_ptr, bfd_size_type); /* Routines used by the linker. */ #define BFD_JUMP_TABLE_LINK(NAME) \ NAME##_sizeof_headers, \ NAME##_bfd_get_relocated_section_contents, \ NAME##_bfd_relax_section, \ NAME##_bfd_link_hash_table_create, \ NAME##_bfd_link_hash_table_free, \ NAME##_bfd_link_add_symbols, \ NAME##_bfd_link_just_syms, \ NAME##_bfd_final_link, \ NAME##_bfd_link_split_section, \ NAME##_bfd_gc_sections, \ NAME##_bfd_merge_sections, \ NAME##_bfd_is_group_section, \ NAME##_bfd_discard_group, \ NAME##_section_already_linked \ int (*_bfd_sizeof_headers) (bfd *, struct bfd_link_info *); bfd_byte * (*_bfd_get_relocated_section_contents) (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *, bfd_boolean, struct bfd_symbol **); bfd_boolean (*_bfd_relax_section) (bfd *, struct bfd_section *, struct bfd_link_info *, bfd_boolean *); /* Create a hash table for the linker. Different backends store different information in this table. */ struct bfd_link_hash_table * (*_bfd_link_hash_table_create) (bfd *); /* Release the memory associated with the linker hash table. */ void (*_bfd_link_hash_table_free) (struct bfd_link_hash_table *); /* Add symbols from this object file into the hash table. */ bfd_boolean (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *); /* Indicate that we are only retrieving symbol values from this section. */ void (*_bfd_link_just_syms) (asection *, struct bfd_link_info *); /* Do a link based on the link_order structures attached to each section of the BFD. */ bfd_boolean (*_bfd_final_link) (bfd *, struct bfd_link_info *); /* Should this section be split up into smaller pieces during linking. */ bfd_boolean (*_bfd_link_split_section) (bfd *, struct bfd_section *); /* Remove sections that are not referenced from the output. */ bfd_boolean (*_bfd_gc_sections) (bfd *, struct bfd_link_info *); /* Attempt to merge SEC_MERGE sections. */ bfd_boolean (*_bfd_merge_sections) (bfd *, struct bfd_link_info *); /* Is this section a member of a group? */ bfd_boolean (*_bfd_is_group_section) (bfd *, const struct bfd_section *); /* Discard members of a group. */ bfd_boolean (*_bfd_discard_group) (bfd *, struct bfd_section *); /* Check if SEC has been already linked during a reloceatable or final link. */ void (*_section_already_linked) (bfd *, struct bfd_section *, struct bfd_link_info *); /* Routines to handle dynamic symbols and relocs. */ #define BFD_JUMP_TABLE_DYNAMIC(NAME) \ NAME##_get_dynamic_symtab_upper_bound, \ NAME##_canonicalize_dynamic_symtab, \ NAME##_get_synthetic_symtab, \ NAME##_get_dynamic_reloc_upper_bound, \ NAME##_canonicalize_dynamic_reloc /* Get the amount of memory required to hold the dynamic symbols. */ long (*_bfd_get_dynamic_symtab_upper_bound) (bfd *); /* Read in the dynamic symbols. */ long (*_bfd_canonicalize_dynamic_symtab) (bfd *, struct bfd_symbol **); /* Create synthetized symbols. */ long (*_bfd_get_synthetic_symtab) (bfd *, long, struct bfd_symbol **, long, struct bfd_symbol **, struct bfd_symbol **); /* Get the amount of memory required to hold the dynamic relocs. */ long (*_bfd_get_dynamic_reloc_upper_bound) (bfd *); /* Read in the dynamic relocs. */ long (*_bfd_canonicalize_dynamic_reloc) (bfd *, arelent **, struct bfd_symbol **); A pointer to an alternative bfd_target in case the current one is not satisfactory. This can happen when the target cpu supports both big and little endian code, and target chosen by the linker has the wrong endianness. The function open_output() in ld/ldlang.c uses this field to find an alternative output format that is suitable. /* Opposite endian version of this target. */ const struct bfd_target * alternative_target; /* Data for use by back-end routines, which isn't generic enough to belong in this structure. */ const void *backend_data; } bfd_target; bfd_set_default_target bfd_set_default_targetSynopsis bfd_boolean bfd_set_default_target (const char *name); Description Set the default target vector to use when recognizing a BFD. This takes the name of the target, which may be a BFD target name or a configuration triplet. bfd_find_target bfd_find_targetSynopsis const bfd_target *bfd_find_target (const char *target_name, bfd *abfd); Description Return a pointer to the transfer vector for the object target named target_name. If target_name is NULL, choose the one in the environment variable GNUTARGET; if that is null or not defined, then choose the first entry in the target list. Passing in the string "default" or setting the environment variable to "default" will cause the first entry in the target list to be returned, and "target_defaulted" will be set in the BFD if abfd isn't NULL. This causes bfd_check_format to loop over all the targets to find the one that matches the file being read. bfd_target_list bfd_target_listSynopsis const char ** bfd_target_list (void); Description Return a freshly malloced NULL-terminated vector of the names of all the valid BFD targets. Do not modify the names. bfd_seach_for_target bfd_seach_for_targetSynopsis const bfd_target *bfd_search_for_target (int (*search_func) (const bfd_target *, void *), void *); Description Return a pointer to the first transfer vector in the list of transfer vectors maintained by BFD that produces a non-zero result when passed to the function search_func. The parameter data is passed, unexamined, to the search function. ArchitecturesBFD keeps one atom in a BFD describing the architecture of the data attached to the BFD: a pointer to a bfd_arch_info_type. Pointers to structures can be requested independently of a BFD so that an architecture's information can be interrogated without access to an open BFD. The architecture information is provided by each architecture package. The set of default architectures is selected by the macro SELECT_ARCHITECTURES. This is normally set up in the config/target.mt file of your choice. If the name is not defined, then all the architectures supported are included. When BFD starts up, all the architectures are called with an initialize method. It is up to the architecture back end to insert as many items into the list of architectures as it wants to; generally this would be one for each machine and one for the default case (an item with a machine field of 0). BFD's idea of an architecture is implemented in archures.c. bfd_architecture Description This enum gives the object file's CPU architecture, in a global sense—i.e., what processor family does it belong to? Another field indicates which processor within the family is in use. The machine gives a number which distinguishes different versions of the architecture, containing, for example, 2 and 3 for Intel i960 KA and i960 KB, and 68020 and 68030 for Motorola 68020 and 68030. enum bfd_architecture { bfd_arch_unknown, /* File arch not known. */ bfd_arch_obscure, /* Arch known, not one of these. */ bfd_arch_m68k, /* Motorola 68xxx */ #define bfd_mach_m68000 1 #define bfd_mach_m68008 2 #define bfd_mach_m68010 3 #define bfd_mach_m68020 4 #define bfd_mach_m68030 5 #define bfd_mach_m68040 6 #define bfd_mach_m68060 7 #define bfd_mach_cpu32 8 #define bfd_mach_mcf_isa_a_nodiv 9 #define bfd_mach_mcf_isa_a 10 #define bfd_mach_mcf_isa_a_mac 11 #define bfd_mach_mcf_isa_a_emac 12 #define bfd_mach_mcf_isa_aplus 13 #define bfd_mach_mcf_isa_aplus_mac 14 #define bfd_mach_mcf_isa_aplus_emac 15 #define bfd_mach_mcf_isa_b_nousp 16 #define bfd_mach_mcf_isa_b_nousp_mac 17 #define bfd_mach_mcf_isa_b_nousp_emac 18 #define bfd_mach_mcf_isa_b 19 #define bfd_mach_mcf_isa_b_mac 20 #define bfd_mach_mcf_isa_b_emac 21 #define bfd_mach_mcf_isa_b_float 22 #define bfd_mach_mcf_isa_b_float_mac 23 #define bfd_mach_mcf_isa_b_float_emac 24 bfd_arch_vax, /* DEC Vax */ bfd_arch_i960, /* Intel 960 */ /* The order of the following is important. lower number indicates a machine type that only accepts a subset of the instructions available to machines with higher numbers. The exception is the "ca", which is incompatible with all other machines except "core". */ #define bfd_mach_i960_core 1 #define bfd_mach_i960_ka_sa 2 #define bfd_mach_i960_kb_sb 3 #define bfd_mach_i960_mc 4 #define bfd_mach_i960_xa 5 #define bfd_mach_i960_ca 6 #define bfd_mach_i960_jx 7 #define bfd_mach_i960_hx 8 bfd_arch_or32, /* OpenRISC 32 */ bfd_arch_sparc, /* SPARC */ #define bfd_mach_sparc 1 /* The difference between v8plus and v9 is that v9 is a true 64 bit env. */ #define bfd_mach_sparc_sparclet 2 #define bfd_mach_sparc_sparclite 3 #define bfd_mach_sparc_v8plus 4 #define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add'ns. */ #define bfd_mach_sparc_sparclite_le 6 #define bfd_mach_sparc_v9 7 #define bfd_mach_sparc_v9a 8 /* with ultrasparc add'ns. */ #define bfd_mach_sparc_v8plusb 9 /* with cheetah add'ns. */ #define bfd_mach_sparc_v9b 10 /* with cheetah add'ns. */ /* Nonzero if MACH has the v9 instruction set. */ #define bfd_mach_sparc_v9_p(mach) \ ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \ && (mach) != bfd_mach_sparc_sparclite_le) /* Nonzero if MACH is a 64 bit sparc architecture. */ #define bfd_mach_sparc_64bit_p(mach) \ ((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb) bfd_arch_spu, /* PowerPC SPU */ #define bfd_mach_spu 256 bfd_arch_mips, /* MIPS Rxxxx */ #define bfd_mach_mips3000 3000 #define bfd_mach_mips3900 3900 #define bfd_mach_mips4000 4000 #define bfd_mach_mips4010 4010 #define bfd_mach_mips4100 4100 #define bfd_mach_mips4111 4111 #define bfd_mach_mips4120 4120 #define bfd_mach_mips4300 4300 #define bfd_mach_mips4400 4400 #define bfd_mach_mips4600 4600 #define bfd_mach_mips4650 4650 #define bfd_mach_mips5000 5000 #define bfd_mach_mips5400 5400 #define bfd_mach_mips5500 5500 #define bfd_mach_mips6000 6000 #define bfd_mach_mips7000 7000 #define bfd_mach_mips8000 8000 #define bfd_mach_mips9000 9000 #define bfd_mach_mips10000 10000 #define bfd_mach_mips12000 12000 #define bfd_mach_mips16 16 #define bfd_mach_mips5 5 #define bfd_mach_mips_sb1 12310201 /* octal 'SB', 01 */ #define bfd_mach_mipsisa32 32 #define bfd_mach_mipsisa32r2 33 #define bfd_mach_mipsisa64 64 #define bfd_mach_mipsisa64r2 65 bfd_arch_i386, /* Intel 386 */ #define bfd_mach_i386_i386 1 #define bfd_mach_i386_i8086 2 #define bfd_mach_i386_i386_intel_syntax 3 #define bfd_mach_x86_64 64 #define bfd_mach_x86_64_intel_syntax 65 bfd_arch_we32k, /* AT&T WE32xxx */ bfd_arch_tahoe, /* CCI/Harris Tahoe */ bfd_arch_i860, /* Intel 860 */ bfd_arch_i370, /* IBM 360/370 Mainframes */ bfd_arch_romp, /* IBM ROMP PC/RT */ bfd_arch_convex, /* Convex */ bfd_arch_m88k, /* Motorola 88xxx */ bfd_arch_m98k, /* Motorola 98xxx */ bfd_arch_pyramid, /* Pyramid Technology */ bfd_arch_h8300, /* Renesas H8/300 (formerly Hitachi H8/300) */ #define bfd_mach_h8300 1 #define bfd_mach_h8300h 2 #define bfd_mach_h8300s 3 #define bfd_mach_h8300hn 4 #define bfd_mach_h8300sn 5 #define bfd_mach_h8300sx 6 #define bfd_mach_h8300sxn 7 bfd_arch_pdp11, /* DEC PDP-11 */ bfd_arch_powerpc, /* PowerPC */ #define bfd_mach_ppc 32 #define bfd_mach_ppc64 64 #define bfd_mach_ppc_403 403 #define bfd_mach_ppc_403gc 4030 #define bfd_mach_ppc_505 505 #define bfd_mach_ppc_601 601 #define bfd_mach_ppc_602 602 #define bfd_mach_ppc_603 603 #define bfd_mach_ppc_ec603e 6031 #define bfd_mach_ppc_604 604 #define bfd_mach_ppc_620 620 #define bfd_mach_ppc_630 630 #define bfd_mach_ppc_750 750 #define bfd_mach_ppc_860 860 #define bfd_mach_ppc_a35 35 #define bfd_mach_ppc_rs64ii 642 #define bfd_mach_ppc_rs64iii 643 #define bfd_mach_ppc_7400 7400 #define bfd_mach_ppc_e500 500 bfd_arch_rs6000, /* IBM RS/6000 */ #define bfd_mach_rs6k 6000 #define bfd_mach_rs6k_rs1 6001 #define bfd_mach_rs6k_rsc 6003 #define bfd_mach_rs6k_rs2 6002 bfd_arch_hppa, /* HP PA RISC */ #define bfd_mach_hppa10 10 #define bfd_mach_hppa11 11 #define bfd_mach_hppa20 20 #define bfd_mach_hppa20w 25 bfd_arch_d10v, /* Mitsubishi D10V */ #define bfd_mach_d10v 1 #define bfd_mach_d10v_ts2 2 #define bfd_mach_d10v_ts3 3 bfd_arch_d30v, /* Mitsubishi D30V */ bfd_arch_dlx, /* DLX */ bfd_arch_m68hc11, /* Motorola 68HC11 */ bfd_arch_m68hc12, /* Motorola 68HC12 */ #define bfd_mach_m6812_default 0 #define bfd_mach_m6812 1 #define bfd_mach_m6812s 2 bfd_arch_z8k, /* Zilog Z8000 */ #define bfd_mach_z8001 1 #define bfd_mach_z8002 2 bfd_arch_h8500, /* Renesas H8/500 (formerly Hitachi H8/500) */ bfd_arch_sh, /* Renesas / SuperH SH (formerly Hitachi SH) */ #define bfd_mach_sh 1 #define bfd_mach_sh2 0x20 #define bfd_mach_sh_dsp 0x2d #define bfd_mach_sh2a 0x2a #define bfd_mach_sh2a_nofpu 0x2b #define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1 #define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2 #define bfd_mach_sh2a_or_sh4 0x2a3 #define bfd_mach_sh2a_or_sh3e 0x2a4 #define bfd_mach_sh2e 0x2e #define bfd_mach_sh3 0x30 #define bfd_mach_sh3_nommu 0x31 #define bfd_mach_sh3_dsp 0x3d #define bfd_mach_sh3e 0x3e #define bfd_mach_sh4 0x40 #define bfd_mach_sh4_nofpu 0x41 #define bfd_mach_sh4_nommu_nofpu 0x42 #define bfd_mach_sh4a 0x4a #define bfd_mach_sh4a_nofpu 0x4b #define bfd_mach_sh4al_dsp 0x4d #define bfd_mach_sh5 0x50 bfd_arch_alpha, /* Dec Alpha */ #define bfd_mach_alpha_ev4 0x10 #define bfd_mach_alpha_ev5 0x20 #define bfd_mach_alpha_ev6 0x30 bfd_arch_arm, /* Advanced Risc Machines ARM. */ #define bfd_mach_arm_unknown 0 #define bfd_mach_arm_2 1 #define bfd_mach_arm_2a 2 #define bfd_mach_arm_3 3 #define bfd_mach_arm_3M 4 #define bfd_mach_arm_4 5 #define bfd_mach_arm_4T 6 #define bfd_mach_arm_5 7 #define bfd_mach_arm_5T 8 #define bfd_mach_arm_5TE 9 #define bfd_mach_arm_XScale 10 #define bfd_mach_arm_ep9312 11 #define bfd_mach_arm_iWMMXt 12 #define bfd_mach_arm_iWMMXt2 13 bfd_arch_ns32k, /* National Semiconductors ns32000 */ bfd_arch_w65, /* WDC 65816 */ bfd_arch_tic30, /* Texas Instruments TMS320C30 */ bfd_arch_tic4x, /* Texas Instruments TMS320C3X/4X */ #define bfd_mach_tic3x 30 #define bfd_mach_tic4x 40 bfd_arch_tic54x, /* Texas Instruments TMS320C54X */ bfd_arch_tic80, /* TI TMS320c80 (MVP) */ bfd_arch_v850, /* NEC V850 */ #define bfd_mach_v850 1 #define bfd_mach_v850e 'E' #define bfd_mach_v850e1 '1' bfd_arch_arc, /* ARC Cores */ #define bfd_mach_arc_5 5 #define bfd_mach_arc_6 6 #define bfd_mach_arc_7 7 #define bfd_mach_arc_8 8 bfd_arch_m32c, /* Renesas M16C/M32C. */ #define bfd_mach_m16c 0x75 #define bfd_mach_m32c 0x78 bfd_arch_m32r, /* Renesas M32R (formerly Mitsubishi M32R/D) */ #define bfd_mach_m32r 1 /* For backwards compatibility. */ #define bfd_mach_m32rx 'x' #define bfd_mach_m32r2 '2' bfd_arch_mn10200, /* Matsushita MN10200 */ bfd_arch_mn10300, /* Matsushita MN10300 */ #define bfd_mach_mn10300 300 #define bfd_mach_am33 330 #define bfd_mach_am33_2 332 bfd_arch_fr30, #define bfd_mach_fr30 0x46523330 bfd_arch_frv, #define bfd_mach_frv 1 #define bfd_mach_frvsimple 2 #define bfd_mach_fr300 300 #define bfd_mach_fr400 400 #define bfd_mach_fr450 450 #define bfd_mach_frvtomcat 499 /* fr500 prototype */ #define bfd_mach_fr500 500 #define bfd_mach_fr550 550 bfd_arch_mcore, bfd_arch_ia64, /* HP/Intel ia64 */ #define bfd_mach_ia64_elf64 64 #define bfd_mach_ia64_elf32 32 bfd_arch_ip2k, /* Ubicom IP2K microcontrollers. */ #define bfd_mach_ip2022 1 #define bfd_mach_ip2022ext 2 bfd_arch_iq2000, /* Vitesse IQ2000. */ #define bfd_mach_iq2000 1 #define bfd_mach_iq10 2 bfd_arch_mt, #define bfd_mach_ms1 1 #define bfd_mach_mrisc2 2 #define bfd_mach_ms2 3 bfd_arch_pj, bfd_arch_avr, /* Atmel AVR microcontrollers. */ #define bfd_mach_avr1 1 #define bfd_mach_avr2 2 #define bfd_mach_avr3 3 #define bfd_mach_avr4 4 #define bfd_mach_avr5 5 #define bfd_mach_avr6 6 bfd_arch_bfin, /* ADI Blackfin */ #define bfd_mach_bfin 1 bfd_arch_cr16c, /* National Semiconductor CompactRISC. */ #define bfd_mach_cr16c 1 bfd_arch_crx, /* National Semiconductor CRX. */ #define bfd_mach_crx 1 bfd_arch_cris, /* Axis CRIS */ #define bfd_mach_cris_v0_v10 255 #define bfd_mach_cris_v32 32 #define bfd_mach_cris_v10_v32 1032 bfd_arch_s390, /* IBM s390 */ #define bfd_mach_s390_31 31 #define bfd_mach_s390_64 64 bfd_arch_score, /* Sunplus score */ bfd_arch_openrisc, /* OpenRISC */ bfd_arch_mmix, /* Donald Knuth's educational processor. */ bfd_arch_xstormy16, #define bfd_mach_xstormy16 1 bfd_arch_msp430, /* Texas Instruments MSP430 architecture. */ #define bfd_mach_msp11 11 #define bfd_mach_msp110 110 #define bfd_mach_msp12 12 #define bfd_mach_msp13 13 #define bfd_mach_msp14 14 #define bfd_mach_msp15 15 #define bfd_mach_msp16 16 #define bfd_mach_msp21 21 #define bfd_mach_msp31 31 #define bfd_mach_msp32 32 #define bfd_mach_msp33 33 #define bfd_mach_msp41 41 #define bfd_mach_msp42 42 #define bfd_mach_msp43 43 #define bfd_mach_msp44 44 bfd_arch_xc16x, /* Infineon's XC16X Series. */ #define bfd_mach_xc16x 1 #define bfd_mach_xc16xl 2 #define bfd_mach_xc16xs 3 bfd_arch_xtensa, /* Tensilica's Xtensa cores. */ #define bfd_mach_xtensa 1 bfd_arch_maxq, /* Dallas MAXQ 10/20 */ #define bfd_mach_maxq10 10 #define bfd_mach_maxq20 20 bfd_arch_z80, #define bfd_mach_z80strict 1 /* No undocumented opcodes. */ #define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */ #define bfd_mach_z80full 7 /* All undocumented instructions. */ #define bfd_mach_r800 11 /* R800: successor with multiplication. */ bfd_arch_last }; bfd_arch_info Description This structure contains information on architectures for use within BFD. typedef struct bfd_arch_info { int bits_per_word; int bits_per_address; int bits_per_byte; enum bfd_architecture arch; unsigned long mach; const char *arch_name; const char *printable_name; unsigned int section_align_power; /* TRUE if this is the default machine for the architecture. The default arch should be the first entry for an arch so that all the entries for that arch can be accessed via next. */ bfd_boolean the_default; const struct bfd_arch_info * (*compatible) (const struct bfd_arch_info *a, const struct bfd_arch_info *b); bfd_boolean (*scan) (const struct bfd_arch_info *, const char *); const struct bfd_arch_info *next; } bfd_arch_info_type; bfd_printable_name bfd_printable_nameSynopsis const char *bfd_printable_name (bfd *abfd); Description Return a printable string representing the architecture and machine from the pointer to the architecture info structure. bfd_scan_arch bfd_scan_archSynopsis const bfd_arch_info_type *bfd_scan_arch (const char *string); Description Figure out if BFD supports any cpu which could be described with the name string. Return a pointer to an arch_info structure if a machine is found, otherwise NULL. bfd_arch_list bfd_arch_listSynopsis const char **bfd_arch_list (void); Description Return a freshly malloced NULL-terminated vector of the names of all the valid BFD architectures. Do not modify the names. bfd_arch_get_compatible bfd_arch_get_compatibleSynopsis const bfd_arch_info_type *bfd_arch_get_compatible (const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns); Description Determine whether two BFDs' architectures and machine types are compatible. Calculates the lowest common denominator between the two architectures and machine types implied by the BFDs and returns a pointer to an arch_info structure describing the compatible machine. bfd_default_arch_struct bfd_default_arch_structDescription The bfd_default_arch_struct is an item of bfd_arch_info_type which has been initialized to a fairly generic state. A BFD starts life by pointing to this structure, until the correct back end has determined the real architecture of the file. extern const bfd_arch_info_type bfd_default_arch_struct; bfd_set_arch_info bfd_set_arch_infoSynopsis void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg); Description Set the architecture info of abfd to arg. bfd_default_set_arch_mach bfd_default_set_arch_machSynopsis bfd_boolean bfd_default_set_arch_mach (bfd *abfd, enum bfd_architecture arch, unsigned long mach); Description Set the architecture and machine type in BFD abfd to arch and mach. Find the correct pointer to a structure and insert it into the arch_info pointer. bfd_get_arch bfd_get_archSynopsis enum bfd_architecture bfd_get_arch (bfd *abfd); Description Return the enumerated type which describes the BFD abfd's architecture. bfd_get_mach bfd_get_machSynopsis unsigned long bfd_get_mach (bfd *abfd); Description Return the long type which describes the BFD abfd's machine. bfd_arch_bits_per_byte bfd_arch_bits_per_byteSynopsis unsigned int bfd_arch_bits_per_byte (bfd *abfd); Description Return the number of bits in one of the BFD abfd's architecture's bytes. bfd_arch_bits_per_address bfd_arch_bits_per_addressSynopsis unsigned int bfd_arch_bits_per_address (bfd *abfd); Description Return the number of bits in one of the BFD abfd's architecture's addresses. bfd_default_compatible bfd_default_compatibleSynopsis const bfd_arch_info_type *bfd_default_compatible (const bfd_arch_info_type *a, const bfd_arch_info_type *b); Description The default function for testing for compatibility. bfd_default_scan bfd_default_scanSynopsis bfd_boolean bfd_default_scan (const struct bfd_arch_info *info, const char *string); Description The default function for working out whether this is an architecture hit and a machine hit. bfd_get_arch_info bfd_get_arch_infoSynopsis const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd); Description Return the architecture info struct in abfd. bfd_lookup_arch bfd_lookup_archSynopsis const bfd_arch_info_type *bfd_lookup_arch (enum bfd_architecture arch, unsigned long machine); Description Look for the architecture info structure which matches the arguments arch and machine. A machine of 0 matches the machine/architecture structure which marks itself as the default. bfd_printable_arch_mach bfd_printable_arch_machSynopsis const char *bfd_printable_arch_mach (enum bfd_architecture arch, unsigned long machine); Description Return a printable string representing the architecture and machine type. This routine is depreciated. bfd_octets_per_byte bfd_octets_per_byteSynopsis unsigned int bfd_octets_per_byte (bfd *abfd); Description Return the number of octets (8-bit quantities) per target byte (minimum addressable unit). In most cases, this will be one, but some DSP targets have 16, 32, or even 48 bits per byte. bfd_arch_mach_octets_per_byte bfd_arch_mach_octets_per_byteSynopsis unsigned int bfd_arch_mach_octets_per_byte (enum bfd_architecture arch, unsigned long machine); Description See bfd_octets_per_byte. This routine is provided for those cases where a bfd * is not available Opening and closing BFDs Functions for opening and closing bfd_fopen bfd_fopenSynopsis bfd *bfd_fopen (const char *filename, const char *target, const char *mode, int fd); Description Open the file filename with the target target. Return a pointer to the created BFD. If fd is not -1, then fdopen is used to open the file; otherwise, fopen is used. mode is passed directly to fopen or fdopen. Calls bfd_find_target, so target is interpreted as by that function. The new BFD is marked as cacheable iff fd is -1. If NULL is returned then an error has occured. Possible errors are bfd_error_no_memory, bfd_error_invalid_target or system_call error. bfd_openr bfd_openrSynopsis bfd *bfd_openr (const char *filename, const char *target); Description Open the file filename (using fopen) with the target target. Return a pointer to the created BFD. Calls bfd_find_target, so target is interpreted as by that function. If NULL is returned then an error has occured. Possible errors are bfd_error_no_memory, bfd_error_invalid_target or system_call error. bfd_fdopenr bfd_fdopenrSynopsis bfd *bfd_fdopenr (const char *filename, const char *target, int fd); Description bfd_fdopenr is to bfd_fopenr much like fdopen is to fopen. It opens a BFD on a file already described by the fd supplied. When the file is later bfd_closed, the file descriptor will be closed. If the caller desires that this file descriptor be cached by BFD (opened as needed, closed as needed to free descriptors for other opens), with the supplied fd used as an initial file descriptor (but subject to closure at any time), call bfd_set_cacheable(bfd, 1) on the returned BFD. The default is to assume no caching; the file descriptor will remain open until bfd_close, and will not be affected by BFD operations on other files. Possible errors are bfd_error_no_memory, bfd_error_invalid_target and bfd_error_system_call. bfd_openstreamr bfd_openstreamrSynopsis bfd *bfd_openstreamr (const char *, const char *, void *); Description Open a BFD for read access on an existing stdio stream. When the BFD is passed to bfd_close, the stream will be closed. bfd_openr_iovec bfd_openr_iovecSynopsis bfd *bfd_openr_iovec (const char *filename, const char *target, void *(*open) (struct bfd *nbfd, void *open_closure), void *open_closure, file_ptr (*pread) (struct bfd *nbfd, void *stream, void *buf, file_ptr nbytes, file_ptr offset), int (*close) (struct bfd *nbfd, void *stream)); Description Create and return a BFD backed by a read-only stream. The stream is created using open, accessed using pread and destroyed using close. Calls bfd_find_target, so target is interpreted as by that function. Calls open (which can call bfd_zalloc and bfd_get_filename) to obtain the read-only stream backing the BFD. open either succeeds returning the non-NULL stream, or fails returning NULL (setting bfd_error). Calls pread to request nbytes of data from stream starting at offset (e.g., via a call to bfd_read). pread either succeeds returning the number of bytes read (which can be less than nbytes when end-of-file), or fails returning -1 (setting bfd_error). Calls close when the BFD is later closed using bfd_close. close either succeeds returning 0, or fails returning -1 (setting bfd_error). If bfd_openr_iovec returns NULL then an error has occurred. Possible errors are bfd_error_no_memory, bfd_error_invalid_target and bfd_error_system_call. bfd_openw bfd_openwSynopsis bfd *bfd_openw (const char *filename, const char *target); Description Create a BFD, associated with file filename, using the file format target, and return a pointer to it. Possible errors are bfd_error_system_call, bfd_error_no_memory, bfd_error_invalid_target. bfd_close bfd_closeSynopsis bfd_boolean bfd_close (bfd *abfd); Description Close a BFD. If the BFD was open for writing, then pending operations are completed and the file written out and closed. If the created file is executable, then chmod is called to mark it as such. All memory attached to the BFD is released. The file descriptor associated with the BFD is closed (even if it was passed in to BFD by bfd_fdopenr). Returns TRUE is returned if all is ok, otherwise FALSE. bfd_close_all_done bfd_close_all_doneSynopsis bfd_boolean bfd_close_all_done (bfd *); Description Close a BFD. Differs from bfd_close since it does not complete any pending operations. This routine would be used if the application had just used BFD for swapping and didn't want to use any of the writing code. If the created file is executable, then chmod is called to mark it as such. All memory attached to the BFD is released. Returns TRUE is returned if all is ok, otherwise FALSE. bfd_create bfd_createSynopsis bfd *bfd_create (const char *filename, bfd *templ); Description Create a new BFD in the manner of bfd_openw, but without opening a file. The new BFD takes the target from the target used by template. The format is always set to bfd_object. bfd_make_writable bfd_make_writableSynopsis bfd_boolean bfd_make_writable (bfd *abfd); Description Takes a BFD as created by bfd_create and converts it into one like as returned by bfd_openw. It does this by converting the BFD to BFD_IN_MEMORY. It's assumed that you will call bfd_make_readable on this bfd later. Returns TRUE is returned if all is ok, otherwise FALSE. bfd_make_readable bfd_make_readableSynopsis bfd_boolean bfd_make_readable (bfd *abfd); Description Takes a BFD as created by bfd_create and bfd_make_writable and converts it into one like as returned by bfd_openr. It does this by writing the contents out to the memory buffer, then reversing the direction. Returns TRUE is returned if all is ok, otherwise FALSE. bfd_alloc bfd_allocSynopsis void *bfd_alloc (bfd *abfd, bfd_size_type wanted); Description Allocate a block of wanted bytes of memory attached to abfd and return a pointer to it. bfd_alloc2 bfd_alloc2Synopsis void *bfd_alloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size); Description Allocate a block of nmemb elements of size bytes each of memory attached to abfd and return a pointer to it. bfd_zalloc bfd_zallocSynopsis void *bfd_zalloc (bfd *abfd, bfd_size_type wanted); Description Allocate a block of wanted bytes of zeroed memory attached to abfd and return a pointer to it. bfd_zalloc2 bfd_zalloc2Synopsis void *bfd_zalloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size); Description Allocate a block of nmemb elements of size bytes each of zeroed memory attached to abfd and return a pointer to it. bfd_calc_gnu_debuglink_crc32 bfd_calc_gnu_debuglink_crc32Synopsis unsigned long bfd_calc_gnu_debuglink_crc32 (unsigned long crc, const unsigned char *buf, bfd_size_type len); Description Computes a CRC value as used in the .gnu_debuglink section. Advances the previously computed crc value by computing and adding in the crc32 for len bytes of buf. Returns Return the updated CRC32 value. get_debug_link_info get_debug_link_infoSynopsis char *get_debug_link_info (bfd *abfd, unsigned long *crc32_out); Description fetch the filename and CRC32 value for any separate debuginfo associated with abfd. Return NULL if no such info found, otherwise return filename and update crc32_out. separate_debug_file_exists separate_debug_file_existsSynopsis bfd_boolean separate_debug_file_exists (char *name, unsigned long crc32); Description Checks to see if name is a file and if its contents match crc32. find_separate_debug_file find_separate_debug_fileSynopsis char *find_separate_debug_file (bfd *abfd); Description Searches abfd for a reference to separate debugging information, scans various locations in the filesystem, including the file tree rooted at debug_file_directory, and returns a filename of such debugging information if the file is found and has matching CRC32. Returns NULL if no reference to debugging file exists, or file cannot be found. bfd_follow_gnu_debuglink bfd_follow_gnu_debuglinkSynopsis char *bfd_follow_gnu_debuglink (bfd *abfd, const char *dir); Description Takes a BFD and searches it for a .gnu_debuglink section. If this section is found, it examines the section for the name and checksum of a '.debug' file containing auxiliary debugging information. It then searches the filesystem for this .debug file in some standard locations, including the directory tree rooted at dir, and if found returns the full filename. If dir is NULL, it will search a default path configured into libbfd at build time. [XXX this feature is not currently implemented]. Returns NULL on any errors or failure to locate the .debug file, otherwise a pointer to a heap-allocated string containing the filename. The caller is responsible for freeing this string. bfd_create_gnu_debuglink_section bfd_create_gnu_debuglink_sectionSynopsis struct bfd_section *bfd_create_gnu_debuglink_section (bfd *abfd, const char *filename); Description Takes a BFD and adds a .gnu_debuglink section to it. The section is sized to be big enough to contain a link to the specified filename. Returns A pointer to the new section is returned if all is ok. Otherwise NULL is returned and bfd_error is set. bfd_fill_in_gnu_debuglink_section bfd_fill_in_gnu_debuglink_sectionSynopsis bfd_boolean bfd_fill_in_gnu_debuglink_section (bfd *abfd, struct bfd_section *sect, const char *filename); Description Takes a BFD and containing a .gnu_debuglink section SECT and fills in the contents of the section to contain a link to the specified filename. The filename should be relative to the current directory. Returns TRUE is returned if all is ok. Otherwise FALSE is returned and bfd_error is set. Implementation details Internal functions Description These routines are used within BFD. They are not intended for export, but are documented here for completeness. bfd_write_bigendian_4byte_int bfd_write_bigendian_4byte_intSynopsis bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int); Description Write a 4 byte integer i to the output BFD abfd, in big endian order regardless of what else is going on. This is useful in archives. bfd_put_size bfd_put_size bfd_get_size bfd_get_sizeDescription These macros as used for reading and writing raw data in sections; each access (except for bytes) is vectored through the target format of the BFD and mangled accordingly. The mangling performs any necessary endian translations and removes alignment restrictions. Note that types accepted and returned by these macros are identical so they can be swapped around in macros—for example, libaout.h defines GET_WORD to either bfd_get_32 or bfd_get_64. In the put routines, val must be a bfd_vma. If we are on a system without prototypes, the caller is responsible for making sure that is true, with a cast if necessary. We don't cast them in the macro definitions because that would prevent lint or gcc -Wall from detecting sins such as passing a pointer. To detect calling these with less than a bfd_vma, use gcc -Wconversion on a host with 64 bit bfd_vma's. /* Byte swapping macros for user section data. */ #define bfd_put_8(abfd, val, ptr) \ ((void) (*((unsigned char *) (ptr)) = (val) & 0xff)) #define bfd_put_signed_8 \ bfd_put_8 #define bfd_get_8(abfd, ptr) \ (*(unsigned char *) (ptr) & 0xff) #define bfd_get_signed_8(abfd, ptr) \ (((*(unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80) #define bfd_put_16(abfd, val, ptr) \ BFD_SEND (abfd, bfd_putx16, ((val),(ptr))) #define bfd_put_signed_16 \ bfd_put_16 #define bfd_get_16(abfd, ptr) \ BFD_SEND (abfd, bfd_getx16, (ptr)) #define bfd_get_signed_16(abfd, ptr) \ BFD_SEND (abfd, bfd_getx_signed_16, (ptr)) #define bfd_put_32(abfd, val, ptr) \ BFD_SEND (abfd, bfd_putx32, ((val),(ptr))) #define bfd_put_signed_32 \ bfd_put_32 #define bfd_get_32(abfd, ptr) \ BFD_SEND (abfd, bfd_getx32, (ptr)) #define bfd_get_signed_32(abfd, ptr) \ BFD_SEND (abfd, bfd_getx_signed_32, (ptr)) #define bfd_put_64(abfd, val, ptr) \ BFD_SEND (abfd, bfd_putx64, ((val), (ptr))) #define bfd_put_signed_64 \ bfd_put_64 #define bfd_get_64(abfd, ptr) \ BFD_SEND (abfd, bfd_getx64, (ptr)) #define bfd_get_signed_64(abfd, ptr) \ BFD_SEND (abfd, bfd_getx_signed_64, (ptr)) #define bfd_get(bits, abfd, ptr) \ ((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr) \ : (bits) == 16 ? bfd_get_16 (abfd, ptr) \ : (bits) == 32 ? bfd_get_32 (abfd, ptr) \ : (bits) == 64 ? bfd_get_64 (abfd, ptr) \ : (abort (), (bfd_vma) - 1)) #define bfd_put(bits, abfd, val, ptr) \ ((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \ : (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \ : (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \ : (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \ : (abort (), (void) 0)) bfd_h_put_size bfd_h_put_sizeDescription These macros have the same function as their bfd_get_x brethren, except that they are used for removing information for the header records of object files. Believe it or not, some object files keep their header records in big endian order and their data in little endian order. /* Byte swapping macros for file header data. */ #define bfd_h_put_8(abfd, val, ptr) \ bfd_put_8 (abfd, val, ptr) #define bfd_h_put_signed_8(abfd, val, ptr) \ bfd_put_8 (abfd, val, ptr) #define bfd_h_get_8(abfd, ptr) \ bfd_get_8 (abfd, ptr) #define bfd_h_get_signed_8(abfd, ptr) \ bfd_get_signed_8 (abfd, ptr) #define bfd_h_put_16(abfd, val, ptr) \ BFD_SEND (abfd, bfd_h_putx16, (val, ptr)) #define bfd_h_put_signed_16 \ bfd_h_put_16 #define bfd_h_get_16(abfd, ptr) \ BFD_SEND (abfd, bfd_h_getx16, (ptr)) #define bfd_h_get_signed_16(abfd, ptr) \ BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr)) #define bfd_h_put_32(abfd, val, ptr) \ BFD_SEND (abfd, bfd_h_putx32, (val, ptr)) #define bfd_h_put_signed_32 \ bfd_h_put_32 #define bfd_h_get_32(abfd, ptr) \ BFD_SEND (abfd, bfd_h_getx32, (ptr)) #define bfd_h_get_signed_32(abfd, ptr) \ BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr)) #define bfd_h_put_64(abfd, val, ptr) \ BFD_SEND (abfd, bfd_h_putx64, (val, ptr)) #define bfd_h_put_signed_64 \ bfd_h_put_64 #define bfd_h_get_64(abfd, ptr) \ BFD_SEND (abfd, bfd_h_getx64, (ptr)) #define bfd_h_get_signed_64(abfd, ptr) \ BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr)) /* Aliases for the above, which should eventually go away. */ #define H_PUT_64 bfd_h_put_64 #define H_PUT_32 bfd_h_put_32 #define H_PUT_16 bfd_h_put_16 #define H_PUT_8 bfd_h_put_8 #define H_PUT_S64 bfd_h_put_signed_64 #define H_PUT_S32 bfd_h_put_signed_32 #define H_PUT_S16 bfd_h_put_signed_16 #define H_PUT_S8 bfd_h_put_signed_8 #define H_GET_64 bfd_h_get_64 #define H_GET_32 bfd_h_get_32 #define H_GET_16 bfd_h_get_16 #define H_GET_8 bfd_h_get_8 #define H_GET_S64 bfd_h_get_signed_64 #define H_GET_S32 bfd_h_get_signed_32 #define H_GET_S16 bfd_h_get_signed_16 #define H_GET_S8 bfd_h_get_signed_8 bfd_log2 bfd_log2Synopsis unsigned int bfd_log2 (bfd_vma x); Description Return the log base 2 of the value supplied, rounded up. E.g., an x of 1025 returns 11. A x of 0 returns 0. File cachingThe file caching mechanism is embedded within BFD and allows the application to open as many BFDs as it wants without regard to the underlying operating system's file descriptor limit (often as low as 20 open files). The module in cache.c maintains a least recently used list of BFD_CACHE_MAX_OPEN files, and exports the name bfd_cache_lookup, which runs around and makes sure that the required BFD is open. If not, then it chooses a file to close, closes it and opens the one wanted, returning its file handle. Caching functions bfd_cache_init bfd_cache_initSynopsis bfd_boolean bfd_cache_init (bfd *abfd); Description Add a newly opened BFD to the cache. bfd_cache_close bfd_cache_closeSynopsis bfd_boolean bfd_cache_close (bfd *abfd); Description Remove the BFD abfd from the cache. If the attached file is open, then close it too. Returns FALSE is returned if closing the file fails, TRUE is returned if all is well. bfd_cache_close_all bfd_cache_close_allSynopsis bfd_boolean bfd_cache_close_all (void); Description Remove all BFDs from the cache. If the attached file is open, then close it too. Returns FALSE is returned if closing one of the file fails, TRUE is returned if all is well. bfd_open_file bfd_open_fileSynopsis FILE* bfd_open_file (bfd *abfd); Description Call the OS to open a file for abfd. Return the FILE * (possibly NULL) that results from this operation. Set up the BFD so that future accesses know the file is open. If the FILE * returned is NULL, then it won't have been put in the cache, so it won't have to be removed from it. Linker Functions Linker The linker uses three special entry points in the BFD target vector. It is not necessary to write special routines for these entry points when creating a new BFD back end, since generic versions are provided. However, writing them can speed up linking and make it use significantly less runtime memory. The first routine creates a hash table used by the other routines. The second routine adds the symbols from an object file to the hash table. The third routine takes all the object files and links them together to create the output file. These routines are designed so that the linker proper does not need to know anything about the symbols in the object files that it is linking. The linker merely arranges the sections as directed by the linker script and lets BFD handle the details of symbols and relocs. The second routine and third routines are passed a pointer to a struct bfd_link_info structure (defined in bfdlink.h) which holds information relevant to the link, including the linker hash table (which was created by the first routine) and a set of callback functions to the linker proper. The generic linker routines are in linker.c, and use the header file genlink.h. As of this writing, the only back ends which have implemented versions of these routines are a.out (in aoutx.h) and ECOFF (in ecoff.c). The a.out routines are used as examples throughout this section. Creating a linker hash table _bfd_link_hash_table_create in target vector target vector (_bfd_link_hash_table_create) The linker routines must create a hash table, which must be derived from struct bfd_link_hash_table described in bfdlink.c. See , for information on how to create a derived hash table. This entry point is called using the target vector of the linker output file. The _bfd_link_hash_table_create entry point must allocate and initialize an instance of the desired hash table. If the back end does not require any additional information to be stored with the entries in the hash table, the entry point may simply create a struct bfd_link_hash_table. Most likely, however, some additional information will be needed. For example, with each entry in the hash table the a.out linker keeps the index the symbol has in the final output file (this index number is used so that when doing a relocatable link the symbol index used in the output file can be quickly filled in when copying over a reloc). The a.out linker code defines the required structures and functions for a hash table derived from struct bfd_link_hash_table. The a.out linker hash table is created by the function NAME(aout,link_hash_table_create); it simply allocates space for the hash table, initializes it, and returns a pointer to it. When writing the linker routines for a new back end, you will generally not know exactly which fields will be required until you have finished. You should simply create a new hash table which defines no additional fields, and then simply add fields as they become necessary. Adding symbols to the hash table _bfd_link_add_symbols in target vector target vector (_bfd_link_add_symbols) The linker proper will call the _bfd_link_add_symbols entry point for each object file or archive which is to be linked (typically these are the files named on the command line, but some may also come from the linker script). The entry point is responsible for examining the file. For an object file, BFD must add any relevant symbol information to the hash table. For an archive, BFD must determine which elements of the archive should be used and adding them to the link. The a.out version of this entry point is NAME(aout,link_add_symbols). Differing file formatsNormally all the files involved in a link will be of the same format, but it is also possible to link together different format object files, and the back end must support that. The _bfd_link_add_symbols entry point is called via the target vector of the file to be added. This has an important consequence: the function may not assume that the hash table is the type created by the corresponding _bfd_link_hash_table_create vector. All the _bfd_link_add_symbols function can assume about the hash table is that it is derived from struct bfd_link_hash_table. Sometimes the _bfd_link_add_symbols function must store some information in the hash table entry to be used by the _bfd_final_link function. In such a case the creator field of the hash table must be checked to make sure that the hash table was created by an object file of the same format. The _bfd_final_link routine must be prepared to handle a hash entry without any extra information added by the _bfd_link_add_symbols function. A hash entry without extra information will also occur when the linker script directs the linker to create a symbol. Note that, regardless of how a hash table entry is added, all the fields will be initialized to some sort of null value by the hash table entry initialization function. See ecoff_link_add_externals for an example of how to check the creator field before saving information (in this case, the ECOFF external symbol debugging information) in a hash table entry. Adding symbols from an object fileWhen the _bfd_link_add_symbols routine is passed an object file, it must add all externally visible symbols in that object file to the hash table. The actual work of adding the symbol to the hash table is normally handled by the function _bfd_generic_link_add_one_symbol. The _bfd_link_add_symbols routine is responsible for reading all the symbols from the object file and passing the correct information to _bfd_generic_link_add_one_symbol. The _bfd_link_add_symbols routine should not use bfd_canonicalize_symtab to read the symbols. The point of providing this routine is to avoid the overhead of converting the symbols into generic asymbol structures. _bfd_generic_link_add_one_symbol _bfd_generic_link_add_one_symbol handles the details of combining common symbols, warning about multiple definitions, and so forth. It takes arguments which describe the symbol to add, notably symbol flags, a section, and an offset. The symbol flags include such things as BSF_WEAK or BSF_INDIRECT. The section is a section in the object file, or something like bfd_und_section_ptr for an undefined symbol or bfd_com_section_ptr for a common symbol. If the _bfd_final_link routine is also going to need to read the symbol information, the _bfd_link_add_symbols routine should save it somewhere attached to the object file BFD. However, the information should only be saved if the keep_memory field of the info argument is TRUE, so that the -no-keep-memory linker switch is effective. The a.out function which adds symbols from an object file is aout_link_add_object_symbols, and most of the interesting work is in aout_link_add_symbols. The latter saves pointers to the hash tables entries created by _bfd_generic_link_add_one_symbol indexed by symbol number, so that the _bfd_final_link routine does not have to call the hash table lookup routine to locate the entry. Adding symbols from an archiveWhen the _bfd_link_add_symbols routine is passed an archive, it must look through the symbols defined by the archive and decide which elements of the archive should be included in the link. For each such element it must call the add_archive_element linker callback, and it must add the symbols from the object file to the linker hash table. _bfd_generic_link_add_archive_symbols In most cases the work of looking through the symbols in the archive should be done by the _bfd_generic_link_add_archive_symbols function. This function builds a hash table from the archive symbol table and looks through the list of undefined symbols to see which elements should be included. _bfd_generic_link_add_archive_symbols is passed a function to call to make the final decision about adding an archive element to the link and to do the actual work of adding the symbols to the linker hash table. The function passed to _bfd_generic_link_add_archive_symbols must read the symbols of the archive element and decide whether the archive element should be included in the link. If the element is to be included, the add_archive_element linker callback routine must be called with the element as an argument, and the elements symbols must be added to the linker hash table just as though the element had itself been passed to the _bfd_link_add_symbols function. When the a.out _bfd_link_add_symbols function receives an archive, it calls _bfd_generic_link_add_archive_symbols passing aout_link_check_archive_element as the function argument. aout_link_check_archive_element calls aout_link_check_ar_symbols. If the latter decides to add the element (an element is only added if it provides a real, non-common, definition for a previously undefined or common symbol) it calls the add_archive_element callback and then aout_link_check_archive_element calls aout_link_add_symbols to actually add the symbols to the linker hash table. The ECOFF back end is unusual in that it does not normally call _bfd_generic_link_add_archive_symbols, because ECOFF archives already contain a hash table of symbols. The ECOFF back end searches the archive itself to avoid the overhead of creating a new hash table. Performing the final link _bfd_link_final_link in target vector target vector (_bfd_final_link) When all the input files have been processed, the linker calls the _bfd_final_link entry point of the output BFD. This routine is responsible for producing the final output file, which has several aspects. It must relocate the contents of the input sections and copy the data into the output sections. It must build an output symbol table including any local symbols from the input files and the global symbols from the hash table. When producing relocatable output, it must modify the input relocs and write them into the output file. There may also be object format dependent work to be done. The linker will also call the write_object_contents entry point when the BFD is closed. The two entry points must work together in order to produce the correct output file. The details of how this works are inevitably dependent upon the specific object file format. The a.out _bfd_final_link routine is NAME(aout,final_link). Information provided by the linkerBefore the linker calls the _bfd_final_link entry point, it sets up some data structures for the function to use. The input_bfds field of the bfd_link_info structure will point to a list of all the input files included in the link. These files are linked through the link_next field of the bfd structure. Each section in the output file will have a list of link_order structures attached to the map_head.link_order field (the link_order structure is defined in bfdlink.h). These structures describe how to create the contents of the output section in terms of the contents of various input sections, fill constants, and, eventually, other types of information. They also describe relocs that must be created by the BFD backend, but do not correspond to any input file; this is used to support -Ur, which builds constructors while generating a relocatable object file. Relocating the section contentsThe _bfd_final_link function should look through the link_order structures attached to each section of the output file. Each link_order structure should either be handled specially, or it should be passed to the function _bfd_default_link_order which will do the right thing (_bfd_default_link_order is defined in linker.c). For efficiency, a link_order of type bfd_indirect_link_order whose associated section belongs to a BFD of the same format as the output BFD must be handled specially. This type of link_order describes part of an output section in terms of a section belonging to one of the input files. The _bfd_final_link function should read the contents of the section and any associated relocs, apply the relocs to the section contents, and write out the modified section contents. If performing a relocatable link, the relocs themselves must also be modified and written out. _bfd_relocate_contents _bfd_final_link_relocate The functions _bfd_relocate_contents and _bfd_final_link_relocate provide some general support for performing the actual relocations, notably overflow checking. Their arguments include information about the symbol the relocation is against and a reloc_howto_type argument which describes the relocation to perform. These functions are defined in reloc.c. The a.out function which handles reading, relocating, and writing section contents is aout_link_input_section. The actual relocation is done in aout_link_input_section_std and aout_link_input_section_ext. Writing the symbol tableThe _bfd_final_link function must gather all the symbols in the input files and write them out. It must also write out all the symbols in the global hash table. This must be controlled by the strip and discard fields of the bfd_link_info structure. The local symbols of the input files will not have been entered into the linker hash table. The _bfd_final_link routine must consider each input file and include the symbols in the output file. It may be convenient to do this when looking through the link_order structures, or it may be done by stepping through the input_bfds list. The _bfd_final_link routine must also traverse the global hash table to gather all the externally visible symbols. It is possible that most of the externally visible symbols may be written out when considering the symbols of each input file, but it is still necessary to traverse the hash table since the linker script may have defined some symbols that are not in any of the input files. The strip field of the bfd_link_info structure controls which symbols are written out. The possible values are listed in bfdlink.h. If the value is strip_some, then the keep_hash field of the bfd_link_info structure is a hash table of symbols to keep; each symbol should be looked up in this hash table, and only symbols which are present should be included in the output file. If the strip field of the bfd_link_info structure permits local symbols to be written out, the discard field is used to further controls which local symbols are included in the output file. If the value is discard_l, then all local symbols which begin with a certain prefix are discarded; this is controlled by the bfd_is_local_label_name entry point. The a.out backend handles symbols by calling aout_link_write_symbols on each input BFD and then traversing the global hash table with the function aout_link_write_other_symbol. It builds a string table while writing out the symbols, which is written to the output file at the end of NAME(aout,final_link). bfd_link_split_section bfd_link_split_sectionSynopsis bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec); Description Return nonzero if sec should be split during a reloceatable or final link. #define bfd_link_split_section(abfd, sec) \ BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec)) bfd_section_already_linked bfd_section_already_linkedSynopsis void bfd_section_already_linked (bfd *abfd, asection *sec, struct bfd_link_info *info); Description Check if sec has been already linked during a reloceatable or final link. #define bfd_section_already_linked(abfd, sec, info) \ BFD_SEND (abfd, _section_already_linked, (abfd, sec, info)) Hash Tables Hash tables BFD provides a simple set of hash table functions. Routines are provided to initialize a hash table, to free a hash table, to look up a string in a hash table and optionally create an entry for it, and to traverse a hash table. There is currently no routine to delete an string from a hash table. The basic hash table does not permit any data to be stored with a string. However, a hash table is designed to present a base class from which other types of hash tables may be derived. These derived types may store additional information with the string. Hash tables were implemented in this way, rather than simply providing a data pointer in a hash table entry, because they were designed for use by the linker back ends. The linker may create thousands of hash table entries, and the overhead of allocating private data and storing and following pointers becomes noticeable. The basic hash table code is in hash.c. Creating and freeing a hash table bfd_hash_table_init bfd_hash_table_init_n To create a hash table, create an instance of a struct bfd_hash_table (defined in bfd.h) and call bfd_hash_table_init (if you know approximately how many entries you will need, the function bfd_hash_table_init_n, which takes a size argument, may be used). bfd_hash_table_init returns FALSE if some sort of error occurs. bfd_hash_newfunc The function bfd_hash_table_init take as an argument a function to use to create new entries. For a basic hash table, use the function bfd_hash_newfunc. See , for why you would want to use a different value for this argument. bfd_hash_allocate bfd_hash_table_init will create an objalloc which will be used to allocate new entries. You may allocate memory on this objalloc using bfd_hash_allocate. bfd_hash_table_free Use bfd_hash_table_free to free up all the memory that has been allocated for a hash table. This will not free up the struct bfd_hash_table itself, which you must provide. bfd_hash_set_default_size Use bfd_hash_set_default_size to set the default size of hash table to use. Looking up or entering a string bfd_hash_lookup The function bfd_hash_lookup is used both to look up a string in the hash table and to create a new entry. If the create argument is FALSE, bfd_hash_lookup will look up a string. If the string is found, it will returns a pointer to a struct bfd_hash_entry. If the string is not found in the table bfd_hash_lookup will return NULL. You should not modify any of the fields in the returns struct bfd_hash_entry. If the create argument is TRUE, the string will be entered into the hash table if it is not already there. Either way a pointer to a struct bfd_hash_entry will be returned, either to the existing structure or to a newly created one. In this case, a NULL return means that an error occurred. If the create argument is TRUE, and a new entry is created, the copy argument is used to decide whether to copy the string onto the hash table objalloc or not. If copy is passed as FALSE, you must be careful not to deallocate or modify the string as long as the hash table exists. Traversing a hash table bfd_hash_traverse The function bfd_hash_traverse may be used to traverse a hash table, calling a function on each element. The traversal is done in a random order. bfd_hash_traverse takes as arguments a function and a generic void * pointer. The function is called with a hash table entry (a struct bfd_hash_entry *) and the generic pointer passed to bfd_hash_traverse. The function must return a boolean value, which indicates whether to continue traversing the hash table. If the function returns FALSE, bfd_hash_traverse will stop the traversal and return immediately. Deriving a new hash table typeMany uses of hash tables want to store additional information which each entry in the hash table. Some also find it convenient to store additional information with the hash table itself. This may be done using a derived hash table. Since C is not an object oriented language, creating a derived hash table requires sticking together some boilerplate routines with a few differences specific to the type of hash table you want to create. An example of a derived hash table is the linker hash table. The structures for this are defined in bfdlink.h. The functions are in linker.c. You may also derive a hash table from an already derived hash table. For example, the a.out linker backend code uses a hash table derived from the linker hash table. Define the derived structuresYou must define a structure for an entry in the hash table, and a structure for the hash table itself. The first field in the structure for an entry in the hash table must be of the type used for an entry in the hash table you are deriving from. If you are deriving from a basic hash table this is struct bfd_hash_entry, which is defined in bfd.h. The first field in the structure for the hash table itself must be of the type of the hash table you are deriving from itself. If you are deriving from a basic hash table, this is struct bfd_hash_table. For example, the linker hash table defines struct bfd_link_hash_entry (in bfdlink.h). The first field, root, is of type struct bfd_hash_entry. Similarly, the first field in struct bfd_link_hash_table, table, is of type struct bfd_hash_table. Write the derived creation routineYou must write a routine which will create and initialize an entry in the hash table. This routine is passed as the function argument to bfd_hash_table_init. In order to permit other hash tables to be derived from the hash table you are creating, this routine must be written in a standard way. The first argument to the creation routine is a pointer to a hash table entry. This may be NULL, in which case the routine should allocate the right amount of space. Otherwise the space has already been allocated by a hash table type derived from this one. After allocating space, the creation routine must call the creation routine of the hash table type it is derived from, passing in a pointer to the space it just allocated. This will initialize any fields used by the base hash table. Finally the creation routine must initialize any local fields for the new hash table type. Here is a boilerplate example of a creation routine. function_name is the name of the routine. entry_type is the type of an entry in the hash table you are creating. base_newfunc is the name of the creation routine of the hash table type your hash table is derived from. struct bfd_hash_entry * function_name (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { struct entry_type *ret = (entry_type *) entry; /* Allocate the structure if it has not already been allocated by a derived class. */ if (ret == NULL) { ret = bfd_hash_allocate (table, sizeof (* ret)); if (ret == NULL) return NULL; } /* Call the allocation method of the base class. */ ret = ((entry_type *) base_newfunc ((struct bfd_hash_entry *) ret, table, string)); /* Initialize the local fields here. */ return (struct bfd_hash_entry *) ret; } Description The creation routine for the linker hash table, which is in linker.c, looks just like this example. function_name is _bfd_link_hash_newfunc. entry_type is struct bfd_link_hash_entry. base_newfunc is bfd_hash_newfunc, the creation routine for a basic hash table. _bfd_link_hash_newfunc also initializes the local fields in a linker hash table entry: type, written and next. Write other derived routinesYou will want to write other routines for your new hash table, as well. You will want an initialization routine which calls the initialization routine of the hash table you are deriving from and initializes any other local fields. For the linker hash table, this is _bfd_link_hash_table_init in linker.c. You will want a lookup routine which calls the lookup routine of the hash table you are deriving from and casts the result. The linker hash table uses bfd_link_hash_lookup in linker.c (this actually takes an additional argument which it uses to decide how to return the looked up value). You may want a traversal routine. This should just call the traversal routine of the hash table you are deriving from with appropriate casts. The linker hash table uses bfd_link_hash_traverse in linker.c. These routines may simply be defined as macros. For example, the a.out backend linker hash table, which is derived from the linker hash table, uses macros for the lookup and traversal routines. These are aout_link_hash_lookup and aout_link_hash_traverse in aoutx.h. BFD back ends What to Put WhereAll of BFD lives in one directory. a.out backends Description BFD supports a number of different flavours of a.out format, though the major differences are only the sizes of the structures on disk, and the shape of the relocation information. The support is split into a basic support file aoutx.h and other files which derive functions from the base. One derivation file is aoutf1.h (for a.out flavour 1), and adds to the basic a.out functions support for sun3, sun4, 386 and 29k a.out files, to create a target jump vector for a specific target. This information is further split out into more specific files for each machine, including sunos.c for sun3 and sun4, newsos3.c for the Sony NEWS, and demo64.c for a demonstration of a 64 bit a.out format. The base file aoutx.h defines general mechanisms for reading and writing records to and from disk and various other methods which BFD requires. It is included by aout32.c and aout64.c to form the names aout_32_swap_exec_header_in, aout_64_swap_exec_header_in, etc. As an example, this is what goes on to make the back end for a sun4, from aout32.c: #define ARCH_SIZE 32 #include "aoutx.h" Which exports names: ... aout_32_canonicalize_reloc aout_32_find_nearest_line aout_32_get_lineno aout_32_get_reloc_upper_bound ... from sunos.c: #define TARGET_NAME "a.out-sunos-big" #define VECNAME sunos_big_vec #include "aoutf1.h" requires all the names from aout32.c, and produces the jump vector sunos_big_vec The file host-aout.c is a special case. It is for a large set of hosts that use “more or less standard” a.out files, and for which cross-debugging is not interesting. It uses the standard 32-bit a.out support routines, but determines the file offsets and addresses of the text, data, and BSS sections, the machine architecture and machine type, and the entry point address, in a host-dependent manner. Once these values have been determined, generic code is used to handle the object file. When porting it to run on a new system, you must supply: HOST_PAGE_SIZE HOST_SEGMENT_SIZE HOST_MACHINE_ARCH (optional) HOST_MACHINE_MACHINE (optional) HOST_TEXT_START_ADDR HOST_STACK_END_ADDR in the file ../include/sys/h-XXX.h (for your host). These values, plus the structures and macros defined in a.out.h on your host system, will produce a BFD target that will access ordinary a.out files on your host. To configure a new machine to use host-aout.c, specify: TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec TDEPFILES= host-aout.o trad-core.o in the config/XXX.mt file, and modify configure.in to use the XXX.mt file (by setting "bfd_target=XXX") when your configuration is selected. Relocations Description The file aoutx.h provides for both the standard and extended forms of a.out relocation records. The standard records contain only an address, a symbol index, and a type field. The extended records (used on 29ks and sparcs) also have a full integer for an addend. Internal entry points Description aoutx.h exports several routines for accessing the contents of an a.out file, which are gathered and exported in turn by various format specific files (eg sunos.c). aout_size_swap_exec_header_in aout_size_swap_exec_header_inSynopsis void aout_size_swap_exec_header_in, (bfd *abfd, struct external_exec *bytes, struct internal_exec *execp); Description Swap the information in an executable header raw_bytes taken from a raw byte stream memory image into the internal exec header structure execp. aout_size_swap_exec_header_out aout_size_swap_exec_header_outSynopsis void aout_size_swap_exec_header_out (bfd *abfd, struct internal_exec *execp, struct external_exec *raw_bytes); Description Swap the information in an internal exec header structure execp into the buffer raw_bytes ready for writing to disk. aout_size_some_aout_object_p aout_size_some_aout_object_pSynopsis const bfd_target *aout_size_some_aout_object_p (bfd *abfd, struct internal_exec *execp, const bfd_target *(*callback_to_real_object_p) (bfd *)); Description Some a.out variant thinks that the file open in abfd checking is an a.out file. Do some more checking, and set up for access if it really is. Call back to the calling environment's "finish up" function just before returning, to handle any last-minute setup. aout_size_mkobject aout_size_mkobjectSynopsis bfd_boolean aout_size_mkobject, (bfd *abfd); Description Initialize BFD abfd for use with a.out files. aout_size_machine_type aout_size_machine_typeSynopsis enum machine_type aout_size_machine_type (enum bfd_architecture arch, unsigned long machine, bfd_boolean *unknown); Description Keep track of machine architecture and machine type for a.out's. Return the machine_type for a particular architecture and machine, or M_UNKNOWN if that exact architecture and machine can't be represented in a.out format. If the architecture is understood, machine type 0 (default) is always understood. aout_size_set_arch_mach aout_size_set_arch_machSynopsis bfd_boolean aout_size_set_arch_mach, (bfd *, enum bfd_architecture arch, unsigned long machine); Description Set the architecture and the machine of the BFD abfd to the values arch and machine. Verify that abfd's format can support the architecture required. aout_size_new_section_hook aout_size_new_section_hookSynopsis bfd_boolean aout_size_new_section_hook, (bfd *abfd, asection *newsect); Description Called by the BFD in response to a bfd_make_section request. coff backendsBFD supports a number of different flavours of coff format. The major differences between formats are the sizes and alignments of fields in structures on disk, and the occasional extra field. Coff in all its varieties is implemented with a few common files and a number of implementation specific files. For example, The 88k bcs coff format is implemented in the file coff-m88k.c. This file #includes coff/m88k.h which defines the external structure of the coff format for the 88k, and coff/internal.h which defines the internal structure. coff-m88k.c also defines the relocations used by the 88k format See . The Intel i960 processor version of coff is implemented in coff-i960.c. This file has the same structure as coff-m88k.c, except that it includes coff/i960.h rather than coff-m88k.h. Porting to a new version of coffThe recommended method is to select from the existing implementations the version of coff which is most like the one you want to use. For example, we'll say that i386 coff is the one you select, and that your coff flavour is called foo. Copy i386coff.c to foocoff.c, copy ../include/coff/i386.h to ../include/coff/foo.h, and add the lines to targets.c and Makefile.in so that your new back end is used. Alter the shapes of the structures in ../include/coff/foo.h so that they match what you need. You will probably also have to add #ifdefs to the code in coff/internal.h and coffcode.h if your version of coff is too wild. You can verify that your new BFD backend works quite simply by building objdump from the binutils directory, and making sure that its version of what's going on and your host system's idea (assuming it has the pretty standard coff dump utility, usually called att-dump or just dump) are the same. Then clean up your code, and send what you've done to Cygnus. Then your stuff will be in the next release, and you won't have to keep integrating it. How the coff backend works File layoutThe Coff backend is split into generic routines that are applicable to any Coff target and routines that are specific to a particular target. The target-specific routines are further split into ones which are basically the same for all Coff targets except that they use the external symbol format or use different values for certain constants. The generic routines are in coffgen.c. These routines work for any Coff target. They use some hooks into the target specific code; the hooks are in a bfd_coff_backend_data structure, one of which exists for each target. The essentially similar target-specific routines are in coffcode.h. This header file includes executable C code. The various Coff targets first include the appropriate Coff header file, make any special defines that are needed, and then include coffcode.h. Some of the Coff targets then also have additional routines in the target source file itself. For example, coff-i960.c includes coff/internal.h and coff/i960.h. It then defines a few constants, such as I960, and includes coffcode.h. Since the i960 has complex relocation types, coff-i960.c also includes some code to manipulate the i960 relocs. This code is not in coffcode.h because it would not be used by any other target. Bit twiddlingEach flavour of coff supported in BFD has its own header file describing the external layout of the structures. There is also an internal description of the coff layout, in coff/internal.h. A major function of the coff backend is swapping the bytes and twiddling the bits to translate the external form of the structures into the normal internal form. This is all performed in the bfd_swap_thing_direction routines. Some elements are different sizes between different versions of coff; it is the duty of the coff version specific include file to override the definitions of various packing routines in coffcode.h. E.g., the size of line number entry in coff is sometimes 16 bits, and sometimes 32 bits. #defineing PUT_LNSZ_LNNO and GET_LNSZ_LNNO will select the correct one. No doubt, some day someone will find a version of coff which has a varying field size not catered to at the moment. To port BFD, that person will have to add more #defines. Three of the bit twiddling routines are exported to gdb; coff_swap_aux_in, coff_swap_sym_in and coff_swap_lineno_in. GDB reads the symbol table on its own, but uses BFD to fix things up. More of the bit twiddlers are exported for gas; coff_swap_aux_out, coff_swap_sym_out, coff_swap_lineno_out, coff_swap_reloc_out, coff_swap_filehdr_out, coff_swap_aouthdr_out, coff_swap_scnhdr_out. Gas currently keeps track of all the symbol table and reloc drudgery itself, thereby saving the internal BFD overhead, but uses BFD to swap things on the way out, making cross ports much safer. Doing so also allows BFD (and thus the linker) to use the same header files as gas, which makes one avenue to disaster disappear. Symbol readingThe simple canonical form for symbols used by BFD is not rich enough to keep all the information available in a coff symbol table. The back end gets around this problem by keeping the original symbol table around, "behind the scenes". When a symbol table is requested (through a call to bfd_canonicalize_symtab), a request gets through to coff_get_normalized_symtab. This reads the symbol table from the coff file and swaps all the structures inside into the internal form. It also fixes up all the pointers in the table (represented in the file by offsets from the first symbol in the table) into physical pointers to elements in the new internal table. This involves some work since the meanings of fields change depending upon context: a field that is a pointer to another structure in the symbol table at one moment may be the size in bytes of a structure at the next. Another pass is made over the table. All symbols which mark file names (C_FILE symbols) are modified so that the internal string points to the value in the auxent (the real filename) rather than the normal text associated with the symbol (".file"). At this time the symbol names are moved around. Coff stores all symbols less than nine characters long physically within the symbol table; longer strings are kept at the end of the file in the string table. This pass moves all strings into memory and replaces them with pointers to the strings. The symbol table is massaged once again, this time to create the canonical table used by the BFD application. Each symbol is inspected in turn, and a decision made (using the sclass field) about the various flags to set in the asymbol. See . The generated canonical table shares strings with the hidden internal symbol table. Any linenumbers are read from the coff file too, and attached to the symbols which own the functions the linenumbers belong to. Symbol writingWriting a symbol to a coff file which didn't come from a coff file will lose any debugging information. The asymbol structure remembers the BFD from which the symbol was taken, and on output the back end makes sure that the same destination target as source target is present. When the symbols have come from a coff file then all the debugging information is preserved. Symbol tables are provided for writing to the back end in a vector of pointers to pointers. This allows applications like the linker to accumulate and output large symbol tables without having to do too much byte copying. This function runs through the provided symbol table and patches each symbol marked as a file place holder (C_FILE) to point to the next file place holder in the list. It also marks each offset field in the list with the offset from the first symbol of the current symbol. Another function of this procedure is to turn the canonical value form of BFD into the form used by coff. Internally, BFD expects symbol values to be offsets from a section base; so a symbol physically at 0x120, but in a section starting at 0x100, would have the value 0x20. Coff expects symbols to contain their final value, so symbols have their values changed at this point to reflect their sum with their owning section. This transformation uses the output_section field of the asymbol's asection See . coff_mangle_symbols This routine runs though the provided symbol table and uses the offsets generated by the previous pass and the pointers generated when the symbol table was read in to create the structured hierarchy required by coff. It changes each pointer to a symbol into the index into the symbol table of the asymbol. coff_write_symbols This routine runs through the symbol table and patches up the symbols from their internal form into the coff way, calls the bit twiddlers, and writes out the table to the file. coff_symbol_type coff_symbol_typeDescription The hidden information for an asymbol is described in a combined_entry_type: typedef struct coff_ptr_struct { /* Remembers the offset from the first symbol in the file for this symbol. Generated by coff_renumber_symbols. */ unsigned int offset; /* Should the value of this symbol be renumbered. Used for XCOFF C_BSTAT symbols. Set by coff_slurp_symbol_table. */ unsigned int fix_value : 1; /* Should the tag field of this symbol be renumbered. Created by coff_pointerize_aux. */ unsigned int fix_tag : 1; /* Should the endidx field of this symbol be renumbered. Created by coff_pointerize_aux. */ unsigned int fix_end : 1; /* Should the x_csect.x_scnlen field be renumbered. Created by coff_pointerize_aux. */ unsigned int fix_scnlen : 1; /* Fix up an XCOFF C_BINCL/C_EINCL symbol. The value is the index into the line number entries. Set by coff_slurp_symbol_table. */ unsigned int fix_line : 1; /* The container for the symbol structure as read and translated from the file. */ union { union internal_auxent auxent; struct internal_syment syment; } u; } combined_entry_type; /* Each canonical asymbol really looks like this: */ typedef struct coff_symbol_struct { /* The actual symbol which the rest of BFD works with */ asymbol symbol; /* A pointer to the hidden information for this symbol */ combined_entry_type *native; /* A pointer to the linenumber information for this symbol */ struct lineno_cache_entry *lineno; /* Have the line numbers been relocated yet ? */ bfd_boolean done_lineno; } coff_symbol_type; bfd_coff_backend_data bfd_coff_backend_data /* COFF symbol classifications. */ enum coff_symbol_classification { /* Global symbol. */ COFF_SYMBOL_GLOBAL, /* Common symbol. */ COFF_SYMBOL_COMMON, /* Undefined symbol. */ COFF_SYMBOL_UNDEFINED, /* Local symbol. */ COFF_SYMBOL_LOCAL, /* PE section symbol. */ COFF_SYMBOL_PE_SECTION }; Special entry points for gdb to swap in coff symbol table parts: typedef struct { void (*_bfd_coff_swap_aux_in) (bfd *, void *, int, int, int, int, void *); void (*_bfd_coff_swap_sym_in) (bfd *, void *, void *); void (*_bfd_coff_swap_lineno_in) (bfd *, void *, void *); unsigned int (*_bfd_coff_swap_aux_out) (bfd *, void *, int, int, int, int, void *); unsigned int (*_bfd_coff_swap_sym_out) (bfd *, void *, void *); unsigned int (*_bfd_coff_swap_lineno_out) (bfd *, void *, void *); unsigned int (*_bfd_coff_swap_reloc_out) (bfd *, void *, void *); unsigned int (*_bfd_coff_swap_filehdr_out) (bfd *, void *, void *); unsigned int (*_bfd_coff_swap_aouthdr_out) (bfd *, void *, void *); unsigned int (*_bfd_coff_swap_scnhdr_out) (bfd *, void *, void *); unsigned int _bfd_filhsz; unsigned int _bfd_aoutsz; unsigned int _bfd_scnhsz; unsigned int _bfd_symesz; unsigned int _bfd_auxesz; unsigned int _bfd_relsz; unsigned int _bfd_linesz; unsigned int _bfd_filnmlen; bfd_boolean _bfd_coff_long_filenames; bfd_boolean _bfd_coff_long_section_names; unsigned int _bfd_coff_default_section_alignment_power; bfd_boolean _bfd_coff_force_symnames_in_strings; unsigned int _bfd_coff_debug_string_prefix_length; void (*_bfd_coff_swap_filehdr_in) (bfd *, void *, void *); void (*_bfd_coff_swap_aouthdr_in) (bfd *, void *, void *); void (*_bfd_coff_swap_scnhdr_in) (bfd *, void *, void *); void (*_bfd_coff_swap_reloc_in) (bfd *abfd, void *, void *); bfd_boolean (*_bfd_coff_bad_format_hook) (bfd *, void *); bfd_boolean (*_bfd_coff_set_arch_mach_hook) (bfd *, void *); void * (*_bfd_coff_mkobject_hook) (bfd *, void *, void *); bfd_boolean (*_bfd_styp_to_sec_flags_hook) (bfd *, void *, const char *, asection *, flagword *); void (*_bfd_set_alignment_hook) (bfd *, asection *, void *); bfd_boolean (*_bfd_coff_slurp_symbol_table) (bfd *); bfd_boolean (*_bfd_coff_symname_in_debug) (bfd *, struct internal_syment *); bfd_boolean (*_bfd_coff_pointerize_aux_hook) (bfd *, combined_entry_type *, combined_entry_type *, unsigned int, combined_entry_type *); bfd_boolean (*_bfd_coff_print_aux) (bfd *, FILE *, combined_entry_type *, combined_entry_type *, combined_entry_type *, unsigned int); void (*_bfd_coff_reloc16_extra_cases) (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *, bfd_byte *, unsigned int *, unsigned int *); int (*_bfd_coff_reloc16_estimate) (bfd *, asection *, arelent *, unsigned int, struct bfd_link_info *); enum coff_symbol_classification (*_bfd_coff_classify_symbol) (bfd *, struct internal_syment *); bfd_boolean (*_bfd_coff_compute_section_file_positions) (bfd *); bfd_boolean (*_bfd_coff_start_final_link) (bfd *, struct bfd_link_info *); bfd_boolean (*_bfd_coff_relocate_section) (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, struct internal_reloc *, struct internal_syment *, asection **); reloc_howto_type *(*_bfd_coff_rtype_to_howto) (bfd *, asection *, struct internal_reloc *, struct coff_link_hash_entry *, struct internal_syment *, bfd_vma *); bfd_boolean (*_bfd_coff_adjust_symndx) (bfd *, struct bfd_link_info *, bfd *, asection *, struct internal_reloc *, bfd_boolean *); bfd_boolean (*_bfd_coff_link_add_one_symbol) (struct bfd_link_info *, bfd *, const char *, flagword, asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean, struct bfd_link_hash_entry **); bfd_boolean (*_bfd_coff_link_output_has_begun) (bfd *, struct coff_final_link_info *); bfd_boolean (*_bfd_coff_final_link_postscript) (bfd *, struct coff_final_link_info *); } bfd_coff_backend_data; #define coff_backend_info(abfd) \ ((bfd_coff_backend_data *) (abfd)->xvec->backend_data) #define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \ ((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i)) #define bfd_coff_swap_sym_in(a,e,i) \ ((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i)) #define bfd_coff_swap_lineno_in(a,e,i) \ ((coff_backend_info ( a)->_bfd_coff_swap_lineno_in) (a,e,i)) #define bfd_coff_swap_reloc_out(abfd, i, o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o)) #define bfd_coff_swap_lineno_out(abfd, i, o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o)) #define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o) \ ((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,o)) #define bfd_coff_swap_sym_out(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, o)) #define bfd_coff_swap_scnhdr_out(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o)) #define bfd_coff_swap_filehdr_out(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o)) #define bfd_coff_swap_aouthdr_out(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, o)) #define bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz) #define bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz) #define bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz) #define bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz) #define bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz) #define bfd_coff_relsz(abfd) (coff_backend_info (abfd)->_bfd_relsz) #define bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz) #define bfd_coff_filnmlen(abfd) (coff_backend_info (abfd)->_bfd_filnmlen) #define bfd_coff_long_filenames(abfd) \ (coff_backend_info (abfd)->_bfd_coff_long_filenames) #define bfd_coff_long_section_names(abfd) \ (coff_backend_info (abfd)->_bfd_coff_long_section_names) #define bfd_coff_default_section_alignment_power(abfd) \ (coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power) #define bfd_coff_swap_filehdr_in(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o)) #define bfd_coff_swap_aouthdr_in(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o)) #define bfd_coff_swap_scnhdr_in(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o)) #define bfd_coff_swap_reloc_in(abfd, i, o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o)) #define bfd_coff_bad_format_hook(abfd, filehdr) \ ((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr)) #define bfd_coff_set_arch_mach_hook(abfd, filehdr)\ ((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr)) #define bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\ ((coff_backend_info (abfd)->_bfd_coff_mkobject_hook)\ (abfd, filehdr, aouthdr)) #define bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name, section, flags_ptr)\ ((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook)\ (abfd, scnhdr, name, section, flags_ptr)) #define bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\ ((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr)) #define bfd_coff_slurp_symbol_table(abfd)\ ((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd)) #define bfd_coff_symname_in_debug(abfd, sym)\ ((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym)) #define bfd_coff_force_symnames_in_strings(abfd)\ (coff_backend_info (abfd)->_bfd_coff_force_symnames_in_strings) #define bfd_coff_debug_string_prefix_length(abfd)\ (coff_backend_info (abfd)->_bfd_coff_debug_string_prefix_length) #define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\ ((coff_backend_info (abfd)->_bfd_coff_print_aux)\ (abfd, file, base, symbol, aux, indaux)) #define bfd_coff_reloc16_extra_cases(abfd, link_info, link_order,\ reloc, data, src_ptr, dst_ptr)\ ((coff_backend_info (abfd)->_bfd_coff_reloc16_extra_cases)\ (abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr)) #define bfd_coff_reloc16_estimate(abfd, section, reloc, shrink, link_info)\ ((coff_backend_info (abfd)->_bfd_coff_reloc16_estimate)\ (abfd, section, reloc, shrink, link_info)) #define bfd_coff_classify_symbol(abfd, sym)\ ((coff_backend_info (abfd)->_bfd_coff_classify_symbol)\ (abfd, sym)) #define bfd_coff_compute_section_file_positions(abfd)\ ((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\ (abfd)) #define bfd_coff_start_final_link(obfd, info)\ ((coff_backend_info (obfd)->_bfd_coff_start_final_link)\ (obfd, info)) #define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\ ((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\ (obfd, info, ibfd, o, con, rel, isyms, secs)) #define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\ ((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\ (abfd, sec, rel, h, sym, addendp)) #define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\ ((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\ (obfd, info, ibfd, sec, rel, adjustedp)) #define bfd_coff_link_add_one_symbol(info, abfd, name, flags, section,\ value, string, cp, coll, hashp)\ ((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\ (info, abfd, name, flags, section, value, string, cp, coll, hashp)) #define bfd_coff_link_output_has_begun(a,p) \ ((coff_backend_info (a)->_bfd_coff_link_output_has_begun) (a, p)) #define bfd_coff_final_link_postscript(a,p) \ ((coff_backend_info (a)->_bfd_coff_final_link_postscript) (a, p)) Writing relocationsTo write relocations, the back end steps though the canonical relocation table and create an internal_reloc. The symbol index to use is removed from the offset field in the symbol table supplied. The address comes directly from the sum of the section base address and the relocation offset; the type is dug directly from the howto field. Then the internal_reloc is swapped into the shape of an external_reloc and written out to disk. Reading linenumbersCreating the linenumber table is done by reading in the entire coff linenumber table, and creating another table for internal use. A coff linenumber table is structured so that each function is marked as having a line number of 0. Each line within the function is an offset from the first line in the function. The base of the line number information for the table is stored in the symbol associated with the function. Note: The PE format uses line number 0 for a flag indicating a new source file. The information is copied from the external to the internal table, and each symbol which marks a function is marked by pointing its... How does this work ? Reading relocationsCoff relocations are easily transformed into the internal BFD form (arelent). Reading a coff relocation table is done in the following stages: Read the entire coff relocation table into memory. Process each relocation in turn; first swap it from theexternal to the internal form. Turn the symbol referenced in the relocation's symbol indexinto a pointer into the canonical symbol table.This table is the same as the one returned by a call tobfd_canonicalize_symtab. The back end will call thatroutine and save the result if a canonicalization hasn't been done. The reloc index is turned into a pointer to a howtostructure, in a back end specific way. For instance, the 386and 960 use the r_type to directly produce an indexinto a howto table vector; the 88k subtracts a number from ther_type field and creates an addend field. ELF backendsBFD support for ELF formats is being worked on. Currently, the best supported back ends are for sparc and i386 (running svr4 or Solaris 2). Documentation of the internals of the support code still needs to be written. The code is changing quickly enough that we haven't bothered yet. bfd_elf_find_section bfd_elf_find_sectionSynopsis struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name); Description Helper functions for GDB to locate the string tables. Since BFD hides string tables from callers, GDB needs to use an internal hook to find them. Sun's .stabstr, in particular, isn't even pointed to by the .stab section, so ordinary mechanisms wouldn't work to find it, even if we had some. mmo backendThe mmo object format is used exclusively together with Professor Donald E. Knuth's educational 64-bit processor MMIX. The simulator mmix which is available at http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz understands this format. That package also includes a combined assembler and linker called mmixal. The mmo format has no advantages feature-wise compared to e.g. ELF. It is a simple non-relocatable object format with no support for archives or debugging information, except for symbol value information and line numbers (which is not yet implemented in BFD). See http://www-cs-faculty.stanford.edu/~knuth/mmix.html for more information about MMIX. The ELF format is used for intermediate object files in the BFD implementation. File layoutThe mmo file contents is not partitioned into named sections as with e.g. ELF. Memory areas is formed by specifying the location of the data that follows. Only the memory area ‘0x0000…00’ to ‘0x01ff…ff’ is executable, so it is used for code (and constants) and the area ‘0x2000…00’ to ‘0x20ff…ff’ is used for writable data. See . There is provision for specifying “special data” of 65536 different types. We use type 80 (decimal), arbitrarily chosen the same as the ELF e_machine number for MMIX, filling it with section information normally found in ELF objects. See . Contents is entered as 32-bit words, xor:ed over previous contents, always zero-initialized. A word that starts with the byte ‘0x98’ forms a command called a ‘lopcode’, where the next byte distinguished between the thirteen lopcodes. The two remaining bytes, called the ‘Y’ and ‘Z’ fields, or the ‘YZ’ field (a 16-bit big-endian number), are used for various purposes different for each lopcode. As documented in http://www-cs-faculty.stanford.edu/~knuth/mmixal-intro.ps.gz, the lopcodes are: lop_quote 0x98000001. The next word is contents, regardless of whether itstarts with 0x98 or not. lop_loc 0x9801YYZZ, where ‘Z’ is 1 or 2. This is a locationdirective, setting the location for the next data to the next32-bit word (for Z = 1) or 64-bit word (for Z = 2),plus Y * 2^56. Normally ‘Y’ is 0 for the text segmentand 2 for the data segment. lop_skip 0x9802YYZZ. Increase the current location by ‘YZ’ bytes. lop_fixo 0x9803YYZZ, where ‘Z’ is 1 or 2. Store the current locationas 64 bits into the location pointed to by the next 32-bit(Z = 1) or 64-bit (Z = 2) word, plus Y *2^56. lop_fixr 0x9804YYZZ. ‘YZ’ is stored into the current location plus2 - 4 * YZ. lop_fixrx 0x980500ZZ. ‘Z’ is 16 or 24. A value ‘L’ derived fromthe following 32-bit word are used in a manner similar to‘YZ’ in lop_fixr: it is xor:ed into the current locationminus 4 * L. The first byte of the word is 0 or 1. If itis 1, then L = (lowest 24 bits of word) - 2^Z, if 0,then L = (lowest 24 bits of word). lop_file 0x9806YYZZ. ‘Y’ is the file number, ‘Z’ is count of32-bit words. Set the file number to ‘Y’ and the linecounter to 0. The next Z * 4 bytes contain the file name,padded with zeros if the count is not a multiple of four. Thesame ‘Y’ may occur multiple times, but ‘Z’ must be 0 forall but the first occurrence. lop_line 0x9807YYZZ. ‘YZ’ is the line number. Together withlop_file, it forms the source location for the next 32-bit word.Note that for each non-lopcode 32-bit word, line numbers areassumed incremented by one. lop_spec 0x9808YYZZ. ‘YZ’ is the type number. Data until the nextlopcode other than lop_quote forms special data of type ‘YZ’.See .Other types than 80, (or type 80 with a content that does notparse) is stored in sections named .MMIX.spec_data.nwhere n is the ‘YZ’-type. The flags for such asections say not to allocate or load the data. The vma is 0.Contents of multiple occurrences of special data n isconcatenated to the data of the previous lop_spec ns. Thelocation in data or code at which the lop_spec occurred is lost. lop_pre 0x980901ZZ. The first lopcode in a file. The ‘Z’ field forms thelength of header information in 32-bit words, where the first wordtells the time in seconds since ‘00:00:00 GMT Jan 1 1970’. lop_post 0x980a00ZZ. Z > 32. This lopcode follows after allcontent-generating lopcodes in a program. The ‘Z’ fielddenotes the value of ‘rG’ at the beginning of the program.The following 256 - Z big-endian 64-bit words are loadedinto global registers ‘$G’ … ‘$255’. lop_stab 0x980b0000. The next-to-last lopcode in a program. Must followimmediately after the lop_post lopcode and its data. After thislopcode follows all symbols in a compressed format(see ). lop_end 0x980cYYZZ. The last lopcode in a program. It must follow thelop_stab lopcode and its data. The ‘YZ’ field contains thenumber of 32-bit words of symbol table information after thepreceding lop_stab lopcode. Note that the lopcode "fixups"; lop_fixr, lop_fixrx and lop_fixo are not generated by BFD, but are handled. They are generated by mmixal. This trivial one-label, one-instruction file: :Main TRAP 1,2,3 can be represented this way in mmo: 0x98090101 - lop_pre, one 32-bit word with timestamp. <timestamp> 0x98010002 - lop_loc, text segment, using a 64-bit address. Note that mmixal does not emit this for the file above. 0x00000000 - Address, high 32 bits. 0x00000000 - Address, low 32 bits. 0x98060002 - lop_file, 2 32-bit words for file-name. 0x74657374 - "test" 0x2e730000 - ".s\0\0" 0x98070001 - lop_line, line 1. 0x00010203 - TRAP 1,2,3 0x980a00ff - lop_post, setting $255 to 0. 0x00000000 0x00000000 0x980b0000 - lop_stab for ":Main" = 0, serial 1. 0x203a4040 See . 0x10404020 0x4d206120 0x69016e00 0x81000000 0x980c0005 - lop_end; symbol table contained five 32-bit words. Symbol table formatFrom mmixal.w (or really, the generated mmixal.tex) in http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz): “Symbols are stored and retrieved by means of a ‘ternary search trie’, following ideas of Bentley and Sedgewick. (See ACM–SIAM Symp. on Discrete Algorithms ‘8’ (1997), 360–369; R.Sedgewick, ‘Algorithms in C’ (Reading, Mass. Addison–Wesley, 1998), ‘15.4’.) Each trie node stores a character, and there are branches to subtries for the cases where a given character is less than, equal to, or greater than the character in the trie. There also is a pointer to a symbol table entry if a symbol ends at the current node.” So it's a tree encoded as a stream of bytes. The stream of bytes acts on a single virtual global symbol, adding and removing characters and signalling complete symbol points. Here, we read the stream and create symbols at the completion points. First, there's a control byte m. If any of the listed bits in m is nonzero, we execute what stands at the right, in the listed order: (MMO3_LEFT) 0x40 - Traverse left trie. (Read a new command byte and recurse.) (MMO3_SYMBITS) 0x2f - Read the next byte as a character and store it in the current character position; increment character position. Test the bits of m: (MMO3_WCHAR) 0x80 - The character is 16-bit (so read another byte, merge into current character. (MMO3_TYPEBITS) 0xf - We have a complete symbol; parse the type, value and serial number and do what should be done with a symbol. The type and length information is in j = (m & 0xf). (MMO3_REGQUAL_BITS) j == 0xf: A register variable. The following byte tells which register. j <= 8: An absolute symbol. Read j bytes as the big-endian number the symbol equals. A j = 2 with two zero bytes denotes an unknown symbol. j > 8: As with j <= 8, but add (0x20 << 56) to the value in the following j - 8 bytes. Then comes the serial number, as a variant of uleb128, but better named ubeb128: Read bytes and shift the previous value left 7 (multiply by 128). Add in the new byte, repeat until a byte has bit 7 set. The serial number is the computed value minus 128. (MMO3_MIDDLE) 0x20 - Traverse middle trie. (Read a new command byte and recurse.) Decrement character position. (MMO3_RIGHT) 0x10 - Traverse right trie. (Read a new command byte and recurse.) Let's look again at the lop_stab for the trivial file (see ). 0x980b0000 - lop_stab for ":Main" = 0, serial 1. 0x203a4040 0x10404020 0x4d206120 0x69016e00 0x81000000 This forms the trivial trie (note that the path between “:” and “M” is redundant): 203a ":" 40 / 40 / 10 \ 40 / 40 / 204d "M" 2061 "a" 2069 "i" 016e "n" is the last character in a full symbol, and with a value represented in one byte. 00 The value is 0. 81 The serial number is 1. mmo section mappingThe implementation in BFD uses special data type 80 (decimal) to encapsulate and describe named sections, containing e.g. debug information. If needed, any datum in the encapsulation will be quoted using lop_quote. First comes a 32-bit word holding the number of 32-bit words containing the zero-terminated zero-padded segment name. After the name there's a 32-bit word holding flags describing the section type. Then comes a 64-bit big-endian word with the section length (in bytes), then another with the section start address. Depending on the type of section, the contents might follow, zero-padded to 32-bit boundary. For a loadable section (such as data or code), the contents might follow at some later point, not necessarily immediately, as a lop_loc with the same start address as in the section description, followed by the contents. This in effect forms a descriptor that must be emitted before the actual contents. Sections described this way must not overlap. For areas that don't have such descriptors, synthetic sections are formed by BFD. Consecutive contents in the two memory areas ‘0x0000…00’ to ‘0x01ff…ff’ and ‘0x2000…00’ to ‘0x20ff…ff’ are entered in sections named .text and .data respectively. If an area is not otherwise described, but would together with a neighboring lower area be less than ‘0x40000000’ bytes long, it is joined with the lower area and the gap is zero-filled. For other cases, a new section is formed, named .MMIX.sec.n. Here, n is a number, a running count through the mmo file, starting at 0. A loadable section specified as: .section secname,"ax" TETRA 1,2,3,4,-1,-2009 BYTE 80 and linked to address ‘0x4’, is represented by the sequence: 0x98080050 - lop_spec 80 0x00000002 - two 32-bit words for the section name 0x7365636e - "secn" 0x616d6500 - "ame\0" 0x00000033 - flags CODE, READONLY, LOAD, ALLOC 0x00000000 - high 32 bits of section length 0x0000001c - section length is 28 bytes; 6 * 4 + 1 + alignment to 32 bits 0x00000000 - high 32 bits of section address 0x00000004 - section address is 4 0x98010002 - 64 bits with address of following data 0x00000000 - high 32 bits of address 0x00000004 - low 32 bits: data starts at address 4 0x00000001 - 1 0x00000002 - 2 0x00000003 - 3 0x00000004 - 4 0xffffffff - -1 0xfffff827 - -2009 0x50000000 - 80 as a byte, padded with zeros. Note that the lop_spec wrapping does not include the section contents. Compare this to a non-loaded section specified as: .section thirdsec TETRA 200001,100002 BYTE 38,40 This, when linked to address ‘0x200000000000001c’, is represented by: 0x98080050 - lop_spec 80 0x00000002 - two 32-bit words for the section name 0x7365636e - "thir" 0x616d6500 - "dsec" 0x00000010 - flag READONLY 0x00000000 - high 32 bits of section length 0x0000000c - section length is 12 bytes; 2 * 4 + 2 + alignment to 32 bits 0x20000000 - high 32 bits of address 0x0000001c - low 32 bits of address 0x200000000000001c 0x00030d41 - 200001 0x000186a2 - 100002 0x26280000 - 38, 40 as bytes, padded with zeros For the latter example, the section contents must not be loaded in memory, and is therefore specified as part of the special data. The address is usually unimportant but might provide information for e.g. the DWARF 2 debugging format. GNU Free Documentation License
Version 1.1, March 2000
Copyright (C) 2000, 2003 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. PREAMBLEThe purpose of this License is to make a manual, textbook, or otherwritten document “free” in the sense of freedom: to assure everyonethe effective freedom to copy and redistribute it, with or withoutmodifying it, either commercially or noncommercially. Secondarily,this License preserves for the author and publisher a way to getcredit for their work, while not being considered responsible formodifications made by others.This License is a kind of “copyleft”, which means that derivativeworks of the document must themselves be free in the same sense. Itcomplements the GNU General Public License, which is a copyleftlicense designed for free software.We have designed this License in order to use it for manuals for freesoftware, because free software needs free documentation: a freeprogram should come with manuals providing the same freedoms that thesoftware does. But this License is not limited to software manuals;it can be used for any textual work, regardless of subject matter orwhether it is published as a printed book. We recommend this Licenseprincipally for works whose purpose is instruction or reference. APPLICABILITY AND DEFINITIONSThis License applies to any manual or other work that contains anotice placed by the copyright holder saying it can be distributedunder the terms of this License. The “Document”, below, refers to anysuch manual or work. Any member of the public is a licensee, and isaddressed as “you.”A “Modified Version” of the Document means any work containing theDocument or a portion of it, either copied verbatim, or withmodifications and/or translated into another language.A “Secondary Section” is a named appendix or a front-matter section ofthe Document that deals exclusively with the relationship of thepublishers or authors of the Document to the Document's overall subject(or to related matters) and contains nothing that could fall directlywithin that overall subject. (For example, if the Document is in part atextbook of mathematics, a Secondary Section may not explain anymathematics.) The relationship could be a matter of historicalconnection with the subject or with related matters, or of legal,commercial, philosophical, ethical or political position regardingthem.The “Invariant Sections” are certain Secondary Sections whose titlesare designated, as being those of Invariant Sections, in the noticethat says that the Document is released under this License.The “Cover Texts” are certain short passages of text that are listed,as Front-Cover Texts or Back-Cover Texts, in the notice that says thatthe Document is released under this License.A “Transparent” copy of the Document means a machine-readable copy,represented in a format whose specification is available to thegeneral public, whose contents can be viewed and edited directly andstraightforwardly with generic text editors or (for images composed ofpixels) generic paint programs or (for drawings) some widely availabledrawing editor, and that is suitable for input to text formatters orfor automatic translation to a variety of formats suitable for inputto text formatters. A copy made in an otherwise Transparent fileformat whose markup has been designed to thwart or discouragesubsequent modification by readers is not Transparent. A copy that isnot “Transparent” is called “Opaque.”Examples of suitable formats for Transparent copies include plainASCII without markup, Texinfo input format, LaTeX input format, SGMLor XML using a publicly available DTD, and standard-conforming simpleHTML designed for human modification. Opaque formats includePostScript, PDF, proprietary formats that can be read and edited onlyby proprietary word processors, SGML or XML for which the DTD and/orprocessing tools are not generally available, and themachine-generated HTML produced by some word processors for outputpurposes only.The “Title Page” means, for a printed book, the title page itself,plus such following pages as are needed to hold, legibly, the materialthis License requires to appear in the title page. For works informats which do not have any title page as such, “Title Page” meansthe text near the most prominent appearance of the work's title,preceding the beginning of the body of the text. VERBATIM COPYINGYou may copy and distribute the Document in any medium, eithercommercially or noncommercially, provided that this License, thecopyright notices, and the license notice saying this License appliesto the Document are reproduced in all copies, and that you add no otherconditions whatsoever to those of this License. You may not usetechnical measures to obstruct or control the reading or furthercopying of the copies you make or distribute. However, you may acceptcompensation in exchange for copies. If you distribute a large enoughnumber of copies you must also follow the conditions in section 3.You may also lend copies, under the same conditions stated above, andyou may publicly display copies. COPYING IN QUANTITYIf you publish printed copies of the Document numbering more than 100,and the Document's license notice requires Cover Texts, you must enclosethe copies in covers that carry, clearly and legibly, all these CoverTexts: Front-Cover Texts on the front cover, and Back-Cover Texts onthe back cover. Both covers must also clearly and legibly identifyyou as the publisher of these copies. The front cover must presentthe full title with all words of the title equally prominent andvisible. You may add other material on the covers in addition.Copying with changes limited to the covers, as long as they preservethe title of the Document and satisfy these conditions, can be treatedas verbatim copying in other respects.If the required texts for either cover are too voluminous to fitlegibly, you should put the first ones listed (as many as fitreasonably) on the actual cover, and continue the rest onto adjacentpages.If you publish or distribute Opaque copies of the Document numberingmore than 100, you must either include a machine-readable Transparentcopy along with each Opaque copy, or state in or with each Opaque copya publicly-accessible computer-network location containing a completeTransparent copy of the Document, free of added material, which thegeneral network-using public has access to download anonymously at nocharge using public-standard network protocols. If you use the latteroption, you must take reasonably prudent steps, when you begindistribution of Opaque copies in quantity, to ensure that thisTransparent copy will remain thus accessible at the stated locationuntil at least one year after the last time you distribute an Opaquecopy (directly or through your agents or retailers) of that edition tothe public.It is requested, but not required, that you contact the authors of theDocument well before redistributing any large number of copies, to givethem a chance to provide you with an updated version of the Document. MODIFICATIONSYou may copy and distribute a Modified Version of the Document underthe conditions of sections 2 and 3 above, provided that you releasethe Modified Version under precisely this License, with the ModifiedVersion filling the role of the Document, thus licensing distributionand modification of the Modified Version to whoever possesses a copyof it. In addition, you must do these things in the Modified Version:A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five).C. State on the Title page the name of the publisher of the Modified Version, as the publisher.D. Preserve all the copyright notices of the Document.E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.H. Include an unaltered copy of this License.I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section's title, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.M. Delete any section entitled “Endorsements.” Such a section may not be included in the Modified Version.N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant Section.If the Modified Version includes new front-matter sections orappendices that qualify as Secondary Sections and contain no materialcopied from the Document, you may at your option designate some or allof these sections as invariant. To do this, add their titles to thelist of Invariant Sections in the Modified Version's license notice.These titles must be distinct from any other section titles.You may add a section entitled “Endorsements”, provided it containsnothing but endorsements of your Modified Version by variousparties–for example, statements of peer review or that the text hasbeen approved by an organization as the authoritative definition of astandard.You may add a passage of up to five words as a Front-Cover Text, and apassage of up to 25 words as a Back-Cover Text, to the end of the listof Cover Texts in the Modified Version. Only one passage ofFront-Cover Text and one of Back-Cover Text may be added by (orthrough arrangements made by) any one entity. If the Document alreadyincludes a cover text for the same cover, previously added by you orby arrangement made by the same entity you are acting on behalf of,you may not add another; but you may replace the old one, on explicitpermission from the previous publisher that added the old one.The author(s) and publisher(s) of the Document do not by this Licensegive permission to use their names for publicity for or to assert orimply endorsement of any Modified Version. COMBINING DOCUMENTSYou may combine the Document with other documents released under thisLicense, under the terms defined in section 4 above for modifiedversions, provided that you include in the combination all of theInvariant Sections of all of the original documents, unmodified, andlist them all as Invariant Sections of your combined work in itslicense notice.The combined work need only contain one copy of this License, andmultiple identical Invariant Sections may be replaced with a singlecopy. If there are multiple Invariant Sections with the same name butdifferent contents, make the title of each such section unique byadding at the end of it, in parentheses, the name of the originalauthor or publisher of that section if known, or else a unique number.Make the same adjustment to the section titles in the list ofInvariant Sections in the license notice of the combined work.In the combination, you must combine any sections entitled “History”in the various original documents, forming one section entitled“History”; likewise combine any sections entitled “Acknowledgements”,and any sections entitled “Dedications.” You must delete all sectionsentitled “Endorsements.” COLLECTIONS OF DOCUMENTSYou may make a collection consisting of the Document and other documentsreleased under this License, and replace the individual copies of thisLicense in the various documents with a single copy that is included inthe collection, provided that you follow the rules of this License forverbatim copying of each of the documents in all other respects.You may extract a single document from such a collection, and distributeit individually under this License, provided you insert a copy of thisLicense into the extracted document, and follow this License in allother respects regarding verbatim copying of that document. AGGREGATION WITH INDEPENDENT WORKSA compilation of the Document or its derivatives with other separateand independent documents or works, in or on a volume of a storage ordistribution medium, does not as a whole count as a Modified Versionof the Document, provided no compilation copyright is claimed for thecompilation. Such a compilation is called an “aggregate”, and thisLicense does not apply to the other self-contained works thus compiledwith the Document, on account of their being thus compiled, if theyare not themselves derivative works of the Document.If the Cover Text requirement of section 3 is applicable to thesecopies of the Document, then if the Document is less than one quarterof the entire aggregate, the Document's Cover Texts may be placed oncovers that surround only the Document within the aggregate.Otherwise they must appear on covers around the whole aggregate. TRANSLATIONTranslation is considered a kind of modification, so you maydistribute translations of the Document under the terms of section 4.Replacing Invariant Sections with translations requires specialpermission from their copyright holders, but you may includetranslations of some or all Invariant Sections in addition to theoriginal versions of these Invariant Sections. You may include atranslation of this License provided that you also include theoriginal English version of this License. In case of a disagreementbetween the translation and the original English version of thisLicense, the original English version will prevail. TERMINATIONYou may not copy, modify, sublicense, or distribute the Document exceptas expressly provided for under this License. Any other attempt tocopy, modify, sublicense or distribute the Document is void, and willautomatically terminate your rights under this License. However,parties who have received copies, or rights, from you under thisLicense will not have their licenses terminated so long as suchparties remain in full compliance. FUTURE REVISIONS OF THIS LICENSEThe Free Software Foundation may publish new, revised versionsof the GNU Free Documentation License from time to time. Such newversions will be similar in spirit to the present version, but maydiffer in detail to address new problems or concerns. Seehttp://www.gnu.org/copyleft/.Each version of the License is given a distinguishing version number.If the Document specifies that a particular numbered version of thisLicense “or any later version” applies to it, you have the option offollowing the terms and conditions either of that specified version orof any later version that has been published (not as a draft) by theFree Software Foundation. If the Document does not specify a versionnumber of this License, you may choose any version ever published (notas a draft) by the Free Software Foundation. ADDENDUM: How to use this License for your documents To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: Copyright (C) year your name. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being list their titles, with the Front-Cover Texts being list, and with the Back-Cover Texts being list. A copy of the license is included in the section entitled "GNU Free Documentation License." If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts. If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.
xreflabel="BFD Index" id="BFD-Index"> BFD Index _bfd_final_link_relocate, see _bfd_generic_link_add_archive_symbols, see _bfd_generic_link_add_one_symbol, see _bfd_generic_make_empty_symbol, see _bfd_link_add_symbols in target vector, see _bfd_link_final_link in target vector, see _bfd_link_hash_table_create in target vector, see _bfd_relocate_contents, see A aout_size_machine_type, see aout_size_mkobject, see aout_size_new_section_hook, see aout_size_set_arch_mach, see aout_size_some_aout_object_p, see aout_size_swap_exec_header_in, see aout_size_swap_exec_header_out, see arelent_chain, see B BFD, see BFD canonical format, see bfd_alloc, see bfd_alloc2, see bfd_alt_mach_code, see bfd_arch_bits_per_address, see bfd_arch_bits_per_byte, see bfd_arch_get_compatible, see bfd_arch_list, see bfd_arch_mach_octets_per_byte, see BFD_ARELOC_BFIN_ADD, see BFD_ARELOC_BFIN_ADDR, see BFD_ARELOC_BFIN_AND, see BFD_ARELOC_BFIN_COMP, see BFD_ARELOC_BFIN_CONST, see BFD_ARELOC_BFIN_DIV, see BFD_ARELOC_BFIN_HWPAGE, see BFD_ARELOC_BFIN_LAND, see BFD_ARELOC_BFIN_LEN, see BFD_ARELOC_BFIN_LOR, see BFD_ARELOC_BFIN_LSHIFT, see BFD_ARELOC_BFIN_MOD, see BFD_ARELOC_BFIN_MULT, see BFD_ARELOC_BFIN_NEG, see BFD_ARELOC_BFIN_OR, see BFD_ARELOC_BFIN_PAGE, see BFD_ARELOC_BFIN_PUSH, see BFD_ARELOC_BFIN_RSHIFT, see BFD_ARELOC_BFIN_SUB, see BFD_ARELOC_BFIN_XOR, see bfd_cache_close, see bfd_cache_close_all, see bfd_cache_init, see bfd_calc_gnu_debuglink_crc32, see bfd_canonicalize_reloc, see bfd_canonicalize_symtab, see bfd_check_format, see bfd_check_format_matches, see bfd_check_overflow, see bfd_close, see bfd_close_all_done, see bfd_coff_backend_data, see bfd_copy_private_bfd_data, see bfd_copy_private_header_data, see bfd_copy_private_section_data, see bfd_copy_private_symbol_data, see bfd_core_file_failing_command, see bfd_core_file_failing_signal, see bfd_create, see bfd_create_gnu_debuglink_section, see bfd_decode_symclass, see bfd_default_arch_struct, see bfd_default_compatible, see bfd_default_reloc_type_lookup, see bfd_default_scan, see bfd_default_set_arch_mach, see bfd_elf_find_section, see bfd_emul_get_commonpagesize, see bfd_emul_get_maxpagesize, see bfd_emul_set_commonpagesize, see bfd_emul_set_maxpagesize, see bfd_errmsg, see bfd_fdopenr, see bfd_fill_in_gnu_debuglink_section, see bfd_find_target, see bfd_follow_gnu_debuglink, see bfd_fopen, see bfd_format_string, see bfd_generic_discard_group, see bfd_generic_gc_sections, see bfd_generic_get_relocated_section_contents, see bfd_generic_is_group_section, see bfd_generic_merge_sections, see bfd_generic_relax_section, see bfd_get_arch, see bfd_get_arch_info, see bfd_get_arch_size, see bfd_get_error, see bfd_get_error_handler, see bfd_get_gp_size, see bfd_get_mach, see bfd_get_mtime, see bfd_get_next_mapent, see bfd_get_reloc_code_name, see bfd_get_reloc_size, see bfd_get_reloc_upper_bound, see bfd_get_section_by_name, see bfd_get_section_by_name_if, see bfd_get_section_contents, see bfd_get_sign_extend_vma, see bfd_get_size, see bfd_get_size, see bfd_get_symtab_upper_bound, see bfd_get_unique_section_name, see bfd_h_put_size, see bfd_hash_allocate, see bfd_hash_lookup, see bfd_hash_newfunc, see bfd_hash_set_default_size, see bfd_hash_table_free, see bfd_hash_table_init, see bfd_hash_table_init_n, see bfd_hash_traverse, see bfd_init, see bfd_install_relocation, see bfd_is_local_label, see bfd_is_local_label_name, see bfd_is_target_special_symbol, see bfd_is_undefined_symclass, see bfd_link_split_section, see bfd_log2, see bfd_lookup_arch, see bfd_make_debug_symbol, see bfd_make_empty_symbol, see bfd_make_readable, see bfd_make_section, see bfd_make_section_anyway, see bfd_make_section_anyway_with_flags, see bfd_make_section_old_way, see bfd_make_section_with_flags, see bfd_make_writable, see bfd_malloc_and_get_section, see bfd_map_over_sections, see bfd_merge_private_bfd_data, see bfd_octets_per_byte, see bfd_open_file, see bfd_openr, see bfd_openr_iovec, see bfd_openr_next_archived_file, see bfd_openstreamr, see bfd_openw, see bfd_perform_relocation, see bfd_perror, see bfd_preserve_finish, see bfd_preserve_restore, see bfd_preserve_save, see bfd_print_symbol_vandf, see bfd_printable_arch_mach, see bfd_printable_name, see bfd_put_size, see BFD_RELOC_12_PCREL, see BFD_RELOC_14, see BFD_RELOC_16, see BFD_RELOC_16_BASEREL, see BFD_RELOC_16_GOT_PCREL, see BFD_RELOC_16_GOTOFF, see BFD_RELOC_16_PCREL, see BFD_RELOC_16_PCREL_S2, see BFD_RELOC_16_PLT_PCREL, see BFD_RELOC_16_PLTOFF, see BFD_RELOC_16C_ABS20, see BFD_RELOC_16C_ABS20_C, see BFD_RELOC_16C_ABS24, see BFD_RELOC_16C_ABS24_C, see BFD_RELOC_16C_DISP04, see BFD_RELOC_16C_DISP04_C, see BFD_RELOC_16C_DISP08, see BFD_RELOC_16C_DISP08_C, see BFD_RELOC_16C_DISP16, see BFD_RELOC_16C_DISP16_C, see BFD_RELOC_16C_DISP24, see BFD_RELOC_16C_DISP24_C, see BFD_RELOC_16C_DISP24a, see BFD_RELOC_16C_DISP24a_C, see BFD_RELOC_16C_IMM04, see BFD_RELOC_16C_IMM04_C, see BFD_RELOC_16C_IMM16, see BFD_RELOC_16C_IMM16_C, see BFD_RELOC_16C_IMM20, see BFD_RELOC_16C_IMM20_C, see BFD_RELOC_16C_IMM24, see BFD_RELOC_16C_IMM24_C, see BFD_RELOC_16C_IMM32, see BFD_RELOC_16C_IMM32_C, see BFD_RELOC_16C_NUM08, see BFD_RELOC_16C_NUM08_C, see BFD_RELOC_16C_NUM16, see BFD_RELOC_16C_NUM16_C, see BFD_RELOC_16C_NUM32, see BFD_RELOC_16C_NUM32_C, see BFD_RELOC_16C_REG04, see BFD_RELOC_16C_REG04_C, see BFD_RELOC_16C_REG04a, see BFD_RELOC_16C_REG04a_C, see BFD_RELOC_16C_REG14, see BFD_RELOC_16C_REG14_C, see BFD_RELOC_16C_REG16, see BFD_RELOC_16C_REG16_C, see BFD_RELOC_16C_REG20, see BFD_RELOC_16C_REG20_C, see BFD_RELOC_23_PCREL_S2, see BFD_RELOC_24, see BFD_RELOC_24_PCREL, see BFD_RELOC_24_PLT_PCREL, see BFD_RELOC_26, see BFD_RELOC_32, see BFD_RELOC_32_BASEREL, see BFD_RELOC_32_GOT_PCREL, see BFD_RELOC_32_GOTOFF, see BFD_RELOC_32_PCREL, see BFD_RELOC_32_PCREL_S2, see BFD_RELOC_32_PLT_PCREL, see BFD_RELOC_32_PLTOFF, see BFD_RELOC_32_SECREL, see BFD_RELOC_386_COPY, see BFD_RELOC_386_GLOB_DAT, see BFD_RELOC_386_GOT32, see BFD_RELOC_386_GOTOFF, see BFD_RELOC_386_GOTPC, see BFD_RELOC_386_JUMP_SLOT, see BFD_RELOC_386_PLT32, see BFD_RELOC_386_RELATIVE, see BFD_RELOC_386_TLS_DESC, see BFD_RELOC_386_TLS_DESC_CALL, see BFD_RELOC_386_TLS_DTPMOD32, see BFD_RELOC_386_TLS_DTPOFF32, see BFD_RELOC_386_TLS_GD, see BFD_RELOC_386_TLS_GOTDESC, see BFD_RELOC_386_TLS_GOTIE, see BFD_RELOC_386_TLS_IE, see BFD_RELOC_386_TLS_IE_32, see BFD_RELOC_386_TLS_LDM, see BFD_RELOC_386_TLS_LDO_32, see BFD_RELOC_386_TLS_LE, see BFD_RELOC_386_TLS_LE_32, see BFD_RELOC_386_TLS_TPOFF, see BFD_RELOC_386_TLS_TPOFF32, see BFD_RELOC_390_12, see BFD_RELOC_390_20, see BFD_RELOC_390_COPY, see BFD_RELOC_390_GLOB_DAT, see BFD_RELOC_390_GOT12, see BFD_RELOC_390_GOT16, see BFD_RELOC_390_GOT20, see BFD_RELOC_390_GOT64, see BFD_RELOC_390_GOTENT, see BFD_RELOC_390_GOTOFF64, see BFD_RELOC_390_GOTPC, see BFD_RELOC_390_GOTPCDBL, see BFD_RELOC_390_GOTPLT12, see BFD_RELOC_390_GOTPLT16, see BFD_RELOC_390_GOTPLT20, see BFD_RELOC_390_GOTPLT32, see BFD_RELOC_390_GOTPLT64, see BFD_RELOC_390_GOTPLTENT, see BFD_RELOC_390_JMP_SLOT, see BFD_RELOC_390_PC16DBL, see BFD_RELOC_390_PC32DBL, see BFD_RELOC_390_PLT16DBL, see BFD_RELOC_390_PLT32, see BFD_RELOC_390_PLT32DBL, see BFD_RELOC_390_PLT64, see BFD_RELOC_390_PLTOFF16, see BFD_RELOC_390_PLTOFF32, see BFD_RELOC_390_PLTOFF64, see BFD_RELOC_390_RELATIVE, see BFD_RELOC_390_TLS_DTPMOD, see BFD_RELOC_390_TLS_DTPOFF, see BFD_RELOC_390_TLS_GD32, see BFD_RELOC_390_TLS_GD64, see BFD_RELOC_390_TLS_GDCALL, see BFD_RELOC_390_TLS_GOTIE12, see BFD_RELOC_390_TLS_GOTIE20, see BFD_RELOC_390_TLS_GOTIE32, see BFD_RELOC_390_TLS_GOTIE64, see BFD_RELOC_390_TLS_IE32, see BFD_RELOC_390_TLS_IE64, see BFD_RELOC_390_TLS_IEENT, see BFD_RELOC_390_TLS_LDCALL, see BFD_RELOC_390_TLS_LDM32, see BFD_RELOC_390_TLS_LDM64, see BFD_RELOC_390_TLS_LDO32, see BFD_RELOC_390_TLS_LDO64, see BFD_RELOC_390_TLS_LE32, see BFD_RELOC_390_TLS_LE64, see BFD_RELOC_390_TLS_LOAD, see BFD_RELOC_390_TLS_TPOFF, see BFD_RELOC_64, see BFD_RELOC_64_PCREL, see BFD_RELOC_64_PLT_PCREL, see BFD_RELOC_64_PLTOFF, see BFD_RELOC_68K_GLOB_DAT, see BFD_RELOC_68K_JMP_SLOT, see BFD_RELOC_68K_RELATIVE, see BFD_RELOC_8, see BFD_RELOC_860_COPY, see BFD_RELOC_860_GLOB_DAT, see BFD_RELOC_860_HAGOT, see BFD_RELOC_860_HAGOTOFF, see BFD_RELOC_860_HAPC, see BFD_RELOC_860_HIGH, see BFD_RELOC_860_HIGHADJ, see BFD_RELOC_860_HIGOT, see BFD_RELOC_860_HIGOTOFF, see BFD_RELOC_860_JUMP_SLOT, see BFD_RELOC_860_LOGOT0, see BFD_RELOC_860_LOGOT1, see BFD_RELOC_860_LOGOTOFF0, see BFD_RELOC_860_LOGOTOFF1, see BFD_RELOC_860_LOGOTOFF2, see BFD_RELOC_860_LOGOTOFF3, see BFD_RELOC_860_LOPC, see BFD_RELOC_860_LOW0, see BFD_RELOC_860_LOW1, see BFD_RELOC_860_LOW2, see BFD_RELOC_860_LOW3, see BFD_RELOC_860_PC16, see BFD_RELOC_860_PC26, see BFD_RELOC_860_PLT26, see BFD_RELOC_860_RELATIVE, see BFD_RELOC_860_SPGOT0, see BFD_RELOC_860_SPGOT1, see BFD_RELOC_860_SPGOTOFF0, see BFD_RELOC_860_SPGOTOFF1, see BFD_RELOC_860_SPLIT0, see BFD_RELOC_860_SPLIT1, see BFD_RELOC_860_SPLIT2, see BFD_RELOC_8_BASEREL, see BFD_RELOC_8_FFnn, see BFD_RELOC_8_GOT_PCREL, see BFD_RELOC_8_GOTOFF, see BFD_RELOC_8_PCREL, see BFD_RELOC_8_PLT_PCREL, see BFD_RELOC_8_PLTOFF, see BFD_RELOC_ALPHA_BRSGP, see BFD_RELOC_ALPHA_CODEADDR, see BFD_RELOC_ALPHA_DTPMOD64, see BFD_RELOC_ALPHA_DTPREL16, see BFD_RELOC_ALPHA_DTPREL64, see BFD_RELOC_ALPHA_DTPREL_HI16, see BFD_RELOC_ALPHA_DTPREL_LO16, see BFD_RELOC_ALPHA_ELF_LITERAL, see BFD_RELOC_ALPHA_GOTDTPREL16, see BFD_RELOC_ALPHA_GOTTPREL16, see BFD_RELOC_ALPHA_GPDISP, see BFD_RELOC_ALPHA_GPDISP_HI16, see BFD_RELOC_ALPHA_GPDISP_LO16, see BFD_RELOC_ALPHA_GPREL_HI16, see BFD_RELOC_ALPHA_GPREL_LO16, see BFD_RELOC_ALPHA_HINT, see BFD_RELOC_ALPHA_LINKAGE, see BFD_RELOC_ALPHA_LITERAL, see BFD_RELOC_ALPHA_LITUSE, see BFD_RELOC_ALPHA_TLSGD, see BFD_RELOC_ALPHA_TLSLDM, see BFD_RELOC_ALPHA_TPREL16, see BFD_RELOC_ALPHA_TPREL64, see BFD_RELOC_ALPHA_TPREL_HI16, see BFD_RELOC_ALPHA_TPREL_LO16, see BFD_RELOC_ARC_B22_PCREL, see BFD_RELOC_ARC_B26, see BFD_RELOC_ARM_ADR_IMM, see BFD_RELOC_ARM_ADRL_IMMEDIATE, see BFD_RELOC_ARM_ALU_PC_G0, see BFD_RELOC_ARM_ALU_PC_G0_NC, see BFD_RELOC_ARM_ALU_PC_G1, see BFD_RELOC_ARM_ALU_PC_G1_NC, see BFD_RELOC_ARM_ALU_PC_G2, see BFD_RELOC_ARM_ALU_SB_G0, see BFD_RELOC_ARM_ALU_SB_G0_NC, see BFD_RELOC_ARM_ALU_SB_G1, see BFD_RELOC_ARM_ALU_SB_G1_NC, see BFD_RELOC_ARM_ALU_SB_G2, see BFD_RELOC_ARM_CP_OFF_IMM, see BFD_RELOC_ARM_CP_OFF_IMM_S2, see BFD_RELOC_ARM_GLOB_DAT, see BFD_RELOC_ARM_GOT32, see BFD_RELOC_ARM_GOTOFF, see BFD_RELOC_ARM_GOTPC, see BFD_RELOC_ARM_HWLITERAL, see BFD_RELOC_ARM_IMMEDIATE, see BFD_RELOC_ARM_IN_POOL, see BFD_RELOC_ARM_JUMP_SLOT, see BFD_RELOC_ARM_LDC_PC_G0, see BFD_RELOC_ARM_LDC_PC_G1, see BFD_RELOC_ARM_LDC_PC_G2, see BFD_RELOC_ARM_LDC_SB_G0, see BFD_RELOC_ARM_LDC_SB_G1, see BFD_RELOC_ARM_LDC_SB_G2, see BFD_RELOC_ARM_LDR_IMM, see BFD_RELOC_ARM_LDR_PC_G0, see BFD_RELOC_ARM_LDR_PC_G1, see BFD_RELOC_ARM_LDR_PC_G2, see BFD_RELOC_ARM_LDR_SB_G0, see BFD_RELOC_ARM_LDR_SB_G1, see BFD_RELOC_ARM_LDR_SB_G2, see BFD_RELOC_ARM_LDRS_PC_G0, see BFD_RELOC_ARM_LDRS_PC_G1, see BFD_RELOC_ARM_LDRS_PC_G2, see BFD_RELOC_ARM_LDRS_SB_G0, see BFD_RELOC_ARM_LDRS_SB_G1, see BFD_RELOC_ARM_LDRS_SB_G2, see BFD_RELOC_ARM_LITERAL, see BFD_RELOC_ARM_MOVT, see BFD_RELOC_ARM_MOVT_PCREL, see BFD_RELOC_ARM_MOVW, see BFD_RELOC_ARM_MOVW_PCREL, see BFD_RELOC_ARM_MULTI, see BFD_RELOC_ARM_OFFSET_IMM, see BFD_RELOC_ARM_OFFSET_IMM8, see BFD_RELOC_ARM_PCREL_BLX, see BFD_RELOC_ARM_PCREL_BRANCH, see BFD_RELOC_ARM_PCREL_CALL, see BFD_RELOC_ARM_PCREL_JUMP, see BFD_RELOC_ARM_PLT32, see BFD_RELOC_ARM_PREL31, see BFD_RELOC_ARM_RELATIVE, see BFD_RELOC_ARM_ROSEGREL32, see BFD_RELOC_ARM_SBREL32, see BFD_RELOC_ARM_SHIFT_IMM, see BFD_RELOC_ARM_SMC, see BFD_RELOC_ARM_SWI, see BFD_RELOC_ARM_T32_ADD_IMM, see BFD_RELOC_ARM_T32_ADD_PC12, see BFD_RELOC_ARM_T32_CP_OFF_IMM, see BFD_RELOC_ARM_T32_CP_OFF_IMM_S2, see BFD_RELOC_ARM_T32_IMM12, see BFD_RELOC_ARM_T32_IMMEDIATE, see BFD_RELOC_ARM_T32_OFFSET_IMM, see BFD_RELOC_ARM_T32_OFFSET_U8, see BFD_RELOC_ARM_TARGET1, see BFD_RELOC_ARM_TARGET2, see BFD_RELOC_ARM_THUMB_ADD, see BFD_RELOC_ARM_THUMB_IMM, see BFD_RELOC_ARM_THUMB_MOVT, see BFD_RELOC_ARM_THUMB_MOVT_PCREL, see BFD_RELOC_ARM_THUMB_MOVW, see BFD_RELOC_ARM_THUMB_MOVW_PCREL, see BFD_RELOC_ARM_THUMB_OFFSET, see BFD_RELOC_ARM_THUMB_SHIFT, see BFD_RELOC_ARM_TLS_DTPMOD32, see BFD_RELOC_ARM_TLS_DTPOFF32, see BFD_RELOC_ARM_TLS_GD32, see BFD_RELOC_ARM_TLS_IE32, see BFD_RELOC_ARM_TLS_LDM32, see BFD_RELOC_ARM_TLS_LDO32, see BFD_RELOC_ARM_TLS_LE32, see BFD_RELOC_ARM_TLS_TPOFF32, see BFD_RELOC_AVR_13_PCREL, see BFD_RELOC_AVR_16_PM, see BFD_RELOC_AVR_6, see BFD_RELOC_AVR_6_ADIW, see BFD_RELOC_AVR_7_PCREL, see BFD_RELOC_AVR_CALL, see BFD_RELOC_AVR_HH8_LDI, see BFD_RELOC_AVR_HH8_LDI_NEG, see BFD_RELOC_AVR_HH8_LDI_PM, see BFD_RELOC_AVR_HH8_LDI_PM_NEG, see BFD_RELOC_AVR_HI8_LDI, see BFD_RELOC_AVR_HI8_LDI_GS, see BFD_RELOC_AVR_HI8_LDI_NEG, see BFD_RELOC_AVR_HI8_LDI_PM, see BFD_RELOC_AVR_HI8_LDI_PM_NEG, see BFD_RELOC_AVR_LDI, see BFD_RELOC_AVR_LO8_LDI, see BFD_RELOC_AVR_LO8_LDI_GS, see BFD_RELOC_AVR_LO8_LDI_NEG, see BFD_RELOC_AVR_LO8_LDI_PM, see BFD_RELOC_AVR_LO8_LDI_PM_NEG, see BFD_RELOC_AVR_MS8_LDI, see BFD_RELOC_AVR_MS8_LDI_NEG, see BFD_RELOC_BFIN_10_PCREL, see BFD_RELOC_BFIN_11_PCREL, see BFD_RELOC_BFIN_12_PCREL_JUMP, see BFD_RELOC_BFIN_12_PCREL_JUMP_S, see BFD_RELOC_BFIN_16_HIGH, see BFD_RELOC_BFIN_16_IMM, see BFD_RELOC_BFIN_16_LOW, see BFD_RELOC_BFIN_24_PCREL_CALL_X, see BFD_RELOC_BFIN_24_PCREL_JUMP_L, see BFD_RELOC_BFIN_4_PCREL, see BFD_RELOC_BFIN_5_PCREL, see BFD_RELOC_BFIN_FUNCDESC, see BFD_RELOC_BFIN_FUNCDESC_GOT17M4, see BFD_RELOC_BFIN_FUNCDESC_GOTHI, see BFD_RELOC_BFIN_FUNCDESC_GOTLO, see BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4, see BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI, see BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO, see BFD_RELOC_BFIN_FUNCDESC_VALUE, see BFD_RELOC_BFIN_GOT, see BFD_RELOC_BFIN_GOT17M4, see BFD_RELOC_BFIN_GOTHI, see BFD_RELOC_BFIN_GOTLO, see BFD_RELOC_BFIN_GOTOFF17M4, see BFD_RELOC_BFIN_GOTOFFHI, see BFD_RELOC_BFIN_GOTOFFLO, see BFD_RELOC_BFIN_PLTPC, see bfd_reloc_code_type, see BFD_RELOC_CRIS_16_GOT, see BFD_RELOC_CRIS_16_GOTPLT, see BFD_RELOC_CRIS_32_GOT, see BFD_RELOC_CRIS_32_GOTPLT, see BFD_RELOC_CRIS_32_GOTREL, see BFD_RELOC_CRIS_32_PLT_GOTREL, see BFD_RELOC_CRIS_32_PLT_PCREL, see BFD_RELOC_CRIS_BDISP8, see BFD_RELOC_CRIS_COPY, see BFD_RELOC_CRIS_GLOB_DAT, see BFD_RELOC_CRIS_JUMP_SLOT, see BFD_RELOC_CRIS_LAPCQ_OFFSET, see BFD_RELOC_CRIS_RELATIVE, see BFD_RELOC_CRIS_SIGNED_16, see BFD_RELOC_CRIS_SIGNED_6, see BFD_RELOC_CRIS_SIGNED_8, see BFD_RELOC_CRIS_UNSIGNED_16, see BFD_RELOC_CRIS_UNSIGNED_4, see BFD_RELOC_CRIS_UNSIGNED_5, see BFD_RELOC_CRIS_UNSIGNED_6, see BFD_RELOC_CRIS_UNSIGNED_8, see BFD_RELOC_CRX_ABS16, see BFD_RELOC_CRX_ABS32, see BFD_RELOC_CRX_IMM16, see BFD_RELOC_CRX_IMM32, see BFD_RELOC_CRX_NUM16, see BFD_RELOC_CRX_NUM32, see BFD_RELOC_CRX_NUM8, see BFD_RELOC_CRX_REGREL12, see BFD_RELOC_CRX_REGREL22, see BFD_RELOC_CRX_REGREL28, see BFD_RELOC_CRX_REGREL32, see BFD_RELOC_CRX_REL16, see BFD_RELOC_CRX_REL24, see BFD_RELOC_CRX_REL32, see BFD_RELOC_CRX_REL4, see BFD_RELOC_CRX_REL8, see BFD_RELOC_CRX_REL8_CMP, see BFD_RELOC_CRX_SWITCH16, see BFD_RELOC_CRX_SWITCH32, see BFD_RELOC_CRX_SWITCH8, see BFD_RELOC_CTOR, see BFD_RELOC_D10V_10_PCREL_L, see BFD_RELOC_D10V_10_PCREL_R, see BFD_RELOC_D10V_18, see BFD_RELOC_D10V_18_PCREL, see BFD_RELOC_D30V_15, see BFD_RELOC_D30V_15_PCREL, see BFD_RELOC_D30V_15_PCREL_R, see BFD_RELOC_D30V_21, see BFD_RELOC_D30V_21_PCREL, see BFD_RELOC_D30V_21_PCREL_R, see BFD_RELOC_D30V_32, see BFD_RELOC_D30V_32_PCREL, see BFD_RELOC_D30V_6, see BFD_RELOC_D30V_9_PCREL, see BFD_RELOC_D30V_9_PCREL_R, see BFD_RELOC_DLX_HI16_S, see BFD_RELOC_DLX_JMP26, see BFD_RELOC_DLX_LO16, see BFD_RELOC_FR30_10_IN_8, see BFD_RELOC_FR30_12_PCREL, see BFD_RELOC_FR30_20, see BFD_RELOC_FR30_48, see BFD_RELOC_FR30_6_IN_4, see BFD_RELOC_FR30_8_IN_8, see BFD_RELOC_FR30_9_IN_8, see BFD_RELOC_FR30_9_PCREL, see BFD_RELOC_FRV_FUNCDESC, see BFD_RELOC_FRV_FUNCDESC_GOT12, see BFD_RELOC_FRV_FUNCDESC_GOTHI, see BFD_RELOC_FRV_FUNCDESC_GOTLO, see BFD_RELOC_FRV_FUNCDESC_GOTOFF12, see BFD_RELOC_FRV_FUNCDESC_GOTOFFHI, see BFD_RELOC_FRV_FUNCDESC_GOTOFFLO, see BFD_RELOC_FRV_FUNCDESC_VALUE, see BFD_RELOC_FRV_GETTLSOFF, see BFD_RELOC_FRV_GETTLSOFF_RELAX, see BFD_RELOC_FRV_GOT12, see BFD_RELOC_FRV_GOTHI, see BFD_RELOC_FRV_GOTLO, see BFD_RELOC_FRV_GOTOFF12, see BFD_RELOC_FRV_GOTOFFHI, see BFD_RELOC_FRV_GOTOFFLO, see BFD_RELOC_FRV_GOTTLSDESC12, see BFD_RELOC_FRV_GOTTLSDESCHI, see BFD_RELOC_FRV_GOTTLSDESCLO, see BFD_RELOC_FRV_GOTTLSOFF12, see BFD_RELOC_FRV_GOTTLSOFFHI, see BFD_RELOC_FRV_GOTTLSOFFLO, see BFD_RELOC_FRV_GPREL12, see BFD_RELOC_FRV_GPREL32, see BFD_RELOC_FRV_GPRELHI, see BFD_RELOC_FRV_GPRELLO, see BFD_RELOC_FRV_GPRELU12, see BFD_RELOC_FRV_HI16, see BFD_RELOC_FRV_LABEL16, see BFD_RELOC_FRV_LABEL24, see BFD_RELOC_FRV_LO16, see BFD_RELOC_FRV_TLSDESC_RELAX, see BFD_RELOC_FRV_TLSDESC_VALUE, see BFD_RELOC_FRV_TLSMOFF, see BFD_RELOC_FRV_TLSMOFF12, see BFD_RELOC_FRV_TLSMOFFHI, see BFD_RELOC_FRV_TLSMOFFLO, see BFD_RELOC_FRV_TLSOFF, see BFD_RELOC_FRV_TLSOFF_RELAX, see BFD_RELOC_GPREL16, see BFD_RELOC_GPREL32, see BFD_RELOC_H8_DIR16A8, see BFD_RELOC_H8_DIR16R8, see BFD_RELOC_H8_DIR24A8, see BFD_RELOC_H8_DIR24R8, see BFD_RELOC_H8_DIR32A16, see BFD_RELOC_HI16, see BFD_RELOC_HI16_BASEREL, see BFD_RELOC_HI16_GOTOFF, see BFD_RELOC_HI16_PCREL, see BFD_RELOC_HI16_PLTOFF, see BFD_RELOC_HI16_S, see BFD_RELOC_HI16_S_BASEREL, see BFD_RELOC_HI16_S_GOTOFF, see BFD_RELOC_HI16_S_PCREL, see BFD_RELOC_HI16_S_PLTOFF, see BFD_RELOC_HI22, see BFD_RELOC_I370_D12, see BFD_RELOC_I960_CALLJ, see BFD_RELOC_IA64_COPY, see BFD_RELOC_IA64_DIR32LSB, see BFD_RELOC_IA64_DIR32MSB, see BFD_RELOC_IA64_DIR64LSB, see BFD_RELOC_IA64_DIR64MSB, see BFD_RELOC_IA64_DTPMOD64LSB, see BFD_RELOC_IA64_DTPMOD64MSB, see BFD_RELOC_IA64_DTPREL14, see BFD_RELOC_IA64_DTPREL22, see BFD_RELOC_IA64_DTPREL32LSB, see BFD_RELOC_IA64_DTPREL32MSB, see BFD_RELOC_IA64_DTPREL64I, see BFD_RELOC_IA64_DTPREL64LSB, see BFD_RELOC_IA64_DTPREL64MSB, see BFD_RELOC_IA64_FPTR32LSB, see BFD_RELOC_IA64_FPTR32MSB, see BFD_RELOC_IA64_FPTR64I, see BFD_RELOC_IA64_FPTR64LSB, see BFD_RELOC_IA64_FPTR64MSB, see BFD_RELOC_IA64_GPREL22, see BFD_RELOC_IA64_GPREL32LSB, see BFD_RELOC_IA64_GPREL32MSB, see BFD_RELOC_IA64_GPREL64I, see BFD_RELOC_IA64_GPREL64LSB, see BFD_RELOC_IA64_GPREL64MSB, see BFD_RELOC_IA64_IMM14, see BFD_RELOC_IA64_IMM22, see BFD_RELOC_IA64_IMM64, see BFD_RELOC_IA64_IPLTLSB, see BFD_RELOC_IA64_IPLTMSB, see BFD_RELOC_IA64_LDXMOV, see BFD_RELOC_IA64_LTOFF22, see BFD_RELOC_IA64_LTOFF22X, see BFD_RELOC_IA64_LTOFF64I, see BFD_RELOC_IA64_LTOFF_DTPMOD22, see BFD_RELOC_IA64_LTOFF_DTPREL22, see BFD_RELOC_IA64_LTOFF_FPTR22, see BFD_RELOC_IA64_LTOFF_FPTR32LSB, see BFD_RELOC_IA64_LTOFF_FPTR32MSB, see BFD_RELOC_IA64_LTOFF_FPTR64I, see BFD_RELOC_IA64_LTOFF_FPTR64LSB, see BFD_RELOC_IA64_LTOFF_FPTR64MSB, see BFD_RELOC_IA64_LTOFF_TPREL22, see BFD_RELOC_IA64_LTV32LSB, see BFD_RELOC_IA64_LTV32MSB, see BFD_RELOC_IA64_LTV64LSB, see BFD_RELOC_IA64_LTV64MSB, see BFD_RELOC_IA64_PCREL21B, see BFD_RELOC_IA64_PCREL21BI, see BFD_RELOC_IA64_PCREL21F, see BFD_RELOC_IA64_PCREL21M, see BFD_RELOC_IA64_PCREL22, see BFD_RELOC_IA64_PCREL32LSB, see BFD_RELOC_IA64_PCREL32MSB, see BFD_RELOC_IA64_PCREL60B, see BFD_RELOC_IA64_PCREL64I, see BFD_RELOC_IA64_PCREL64LSB, see BFD_RELOC_IA64_PCREL64MSB, see BFD_RELOC_IA64_PLTOFF22, see BFD_RELOC_IA64_PLTOFF64I, see BFD_RELOC_IA64_PLTOFF64LSB, see BFD_RELOC_IA64_PLTOFF64MSB, see BFD_RELOC_IA64_REL32LSB, see BFD_RELOC_IA64_REL32MSB, see BFD_RELOC_IA64_REL64LSB, see BFD_RELOC_IA64_REL64MSB, see BFD_RELOC_IA64_SECREL32LSB, see BFD_RELOC_IA64_SECREL32MSB, see BFD_RELOC_IA64_SECREL64LSB, see BFD_RELOC_IA64_SECREL64MSB, see BFD_RELOC_IA64_SEGREL32LSB, see BFD_RELOC_IA64_SEGREL32MSB, see BFD_RELOC_IA64_SEGREL64LSB, see BFD_RELOC_IA64_SEGREL64MSB, see BFD_RELOC_IA64_TPREL14, see BFD_RELOC_IA64_TPREL22, see BFD_RELOC_IA64_TPREL64I, see BFD_RELOC_IA64_TPREL64LSB, see BFD_RELOC_IA64_TPREL64MSB, see BFD_RELOC_IP2K_ADDR16CJP, see BFD_RELOC_IP2K_BANK, see BFD_RELOC_IP2K_EX8DATA, see BFD_RELOC_IP2K_FR9, see BFD_RELOC_IP2K_FR_OFFSET, see BFD_RELOC_IP2K_HI8DATA, see BFD_RELOC_IP2K_HI8INSN, see BFD_RELOC_IP2K_LO8DATA, see BFD_RELOC_IP2K_LO8INSN, see BFD_RELOC_IP2K_PAGE3, see BFD_RELOC_IP2K_PC_SKIP, see BFD_RELOC_IP2K_TEXT, see BFD_RELOC_IQ2000_OFFSET_16, see BFD_RELOC_IQ2000_OFFSET_21, see BFD_RELOC_IQ2000_UHI16, see BFD_RELOC_LO10, see BFD_RELOC_LO16, see BFD_RELOC_LO16_BASEREL, see BFD_RELOC_LO16_GOTOFF, see BFD_RELOC_LO16_PCREL, see BFD_RELOC_LO16_PLTOFF, see BFD_RELOC_M32C_HI8, see BFD_RELOC_M32C_RL_1ADDR, see BFD_RELOC_M32C_RL_2ADDR, see BFD_RELOC_M32C_RL_JUMP, see BFD_RELOC_M32R_10_PCREL, see BFD_RELOC_M32R_18_PCREL, see BFD_RELOC_M32R_24, see BFD_RELOC_M32R_26_PCREL, see BFD_RELOC_M32R_26_PLTREL, see BFD_RELOC_M32R_COPY, see BFD_RELOC_M32R_GLOB_DAT, see BFD_RELOC_M32R_GOT16_HI_SLO, see BFD_RELOC_M32R_GOT16_HI_ULO, see BFD_RELOC_M32R_GOT16_LO, see BFD_RELOC_M32R_GOT24, see BFD_RELOC_M32R_GOTOFF, see BFD_RELOC_M32R_GOTOFF_HI_SLO, see BFD_RELOC_M32R_GOTOFF_HI_ULO, see BFD_RELOC_M32R_GOTOFF_LO, see BFD_RELOC_M32R_GOTPC24, see BFD_RELOC_M32R_GOTPC_HI_SLO, see BFD_RELOC_M32R_GOTPC_HI_ULO, see BFD_RELOC_M32R_GOTPC_LO, see BFD_RELOC_M32R_HI16_SLO, see BFD_RELOC_M32R_HI16_ULO, see BFD_RELOC_M32R_JMP_SLOT, see BFD_RELOC_M32R_LO16, see BFD_RELOC_M32R_RELATIVE, see BFD_RELOC_M32R_SDA16, see BFD_RELOC_M68HC11_24, see BFD_RELOC_M68HC11_3B, see BFD_RELOC_M68HC11_HI8, see BFD_RELOC_M68HC11_LO16, see BFD_RELOC_M68HC11_LO8, see BFD_RELOC_M68HC11_PAGE, see BFD_RELOC_M68HC11_RL_GROUP, see BFD_RELOC_M68HC11_RL_JUMP, see BFD_RELOC_M68HC12_5B, see BFD_RELOC_MCORE_PCREL_32, see BFD_RELOC_MCORE_PCREL_IMM11BY2, see BFD_RELOC_MCORE_PCREL_IMM4BY2, see BFD_RELOC_MCORE_PCREL_IMM8BY4, see BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2, see BFD_RELOC_MCORE_RVA, see BFD_RELOC_MIPS16_GPREL, see BFD_RELOC_MIPS16_HI16, see BFD_RELOC_MIPS16_HI16_S, see BFD_RELOC_MIPS16_JMP, see BFD_RELOC_MIPS16_LO16, see BFD_RELOC_MIPS_CALL16, see BFD_RELOC_MIPS_CALL_HI16, see BFD_RELOC_MIPS_CALL_LO16, see BFD_RELOC_MIPS_COPY, see BFD_RELOC_MIPS_DELETE, see BFD_RELOC_MIPS_GOT16, see BFD_RELOC_MIPS_GOT_DISP, see BFD_RELOC_MIPS_GOT_HI16, see BFD_RELOC_MIPS_GOT_LO16, see BFD_RELOC_MIPS_GOT_OFST, see BFD_RELOC_MIPS_GOT_PAGE, see BFD_RELOC_MIPS_HIGHER, see BFD_RELOC_MIPS_HIGHEST, see BFD_RELOC_MIPS_INSERT_A, see BFD_RELOC_MIPS_INSERT_B, see BFD_RELOC_MIPS_JALR, see BFD_RELOC_MIPS_JMP, see BFD_RELOC_MIPS_JUMP_SLOT, see BFD_RELOC_MIPS_LITERAL, see BFD_RELOC_MIPS_REL16, see BFD_RELOC_MIPS_RELGOT, see BFD_RELOC_MIPS_SCN_DISP, see BFD_RELOC_MIPS_SHIFT5, see BFD_RELOC_MIPS_SHIFT6, see BFD_RELOC_MIPS_SUB, see BFD_RELOC_MIPS_TLS_DTPMOD32, see BFD_RELOC_MIPS_TLS_DTPMOD64, see BFD_RELOC_MIPS_TLS_DTPREL32, see BFD_RELOC_MIPS_TLS_DTPREL64, see BFD_RELOC_MIPS_TLS_DTPREL_HI16, see BFD_RELOC_MIPS_TLS_DTPREL_LO16, see BFD_RELOC_MIPS_TLS_GD, see BFD_RELOC_MIPS_TLS_GOTTPREL, see BFD_RELOC_MIPS_TLS_LDM, see BFD_RELOC_MIPS_TLS_TPREL32, see BFD_RELOC_MIPS_TLS_TPREL64, see BFD_RELOC_MIPS_TLS_TPREL_HI16, see BFD_RELOC_MIPS_TLS_TPREL_LO16, see BFD_RELOC_MMIX_ADDR19, see BFD_RELOC_MMIX_ADDR27, see BFD_RELOC_MMIX_BASE_PLUS_OFFSET, see BFD_RELOC_MMIX_CBRANCH, see BFD_RELOC_MMIX_CBRANCH_1, see BFD_RELOC_MMIX_CBRANCH_2, see BFD_RELOC_MMIX_CBRANCH_3, see BFD_RELOC_MMIX_CBRANCH_J, see BFD_RELOC_MMIX_GETA, see BFD_RELOC_MMIX_GETA_1, see BFD_RELOC_MMIX_GETA_2, see BFD_RELOC_MMIX_GETA_3, see BFD_RELOC_MMIX_JMP, see BFD_RELOC_MMIX_JMP_1, see BFD_RELOC_MMIX_JMP_2, see BFD_RELOC_MMIX_JMP_3, see BFD_RELOC_MMIX_LOCAL, see BFD_RELOC_MMIX_PUSHJ, see BFD_RELOC_MMIX_PUSHJ_1, see BFD_RELOC_MMIX_PUSHJ_2, see BFD_RELOC_MMIX_PUSHJ_3, see BFD_RELOC_MMIX_PUSHJ_STUBBABLE, see BFD_RELOC_MMIX_REG, see BFD_RELOC_MMIX_REG_OR_BYTE, see BFD_RELOC_MN10300_16_PCREL, see BFD_RELOC_MN10300_32_PCREL, see BFD_RELOC_MN10300_COPY, see BFD_RELOC_MN10300_GLOB_DAT, see BFD_RELOC_MN10300_GOT16, see BFD_RELOC_MN10300_GOT24, see BFD_RELOC_MN10300_GOT32, see BFD_RELOC_MN10300_GOTOFF24, see BFD_RELOC_MN10300_JMP_SLOT, see BFD_RELOC_MN10300_RELATIVE, see BFD_RELOC_MSP430_10_PCREL, see BFD_RELOC_MSP430_16, see BFD_RELOC_MSP430_16_BYTE, see BFD_RELOC_MSP430_16_PCREL, see BFD_RELOC_MSP430_16_PCREL_BYTE, see BFD_RELOC_MSP430_2X_PCREL, see BFD_RELOC_MSP430_RL_PCREL, see BFD_RELOC_MT_GNU_VTENTRY, see BFD_RELOC_MT_GNU_VTINHERIT, see BFD_RELOC_MT_HI16, see BFD_RELOC_MT_LO16, see BFD_RELOC_MT_PC16, see BFD_RELOC_MT_PCINSN8, see BFD_RELOC_NONE, see BFD_RELOC_NS32K_DISP_16, see BFD_RELOC_NS32K_DISP_16_PCREL, see BFD_RELOC_NS32K_DISP_32, see BFD_RELOC_NS32K_DISP_32_PCREL, see BFD_RELOC_NS32K_DISP_8, see BFD_RELOC_NS32K_DISP_8_PCREL, see BFD_RELOC_NS32K_IMM_16, see BFD_RELOC_NS32K_IMM_16_PCREL, see BFD_RELOC_NS32K_IMM_32, see BFD_RELOC_NS32K_IMM_32_PCREL, see BFD_RELOC_NS32K_IMM_8, see BFD_RELOC_NS32K_IMM_8_PCREL, see BFD_RELOC_OPENRISC_ABS_26, see BFD_RELOC_OPENRISC_REL_26, see BFD_RELOC_PDP11_DISP_6_PCREL, see BFD_RELOC_PDP11_DISP_8_PCREL, see BFD_RELOC_PJ_CODE_DIR16, see BFD_RELOC_PJ_CODE_DIR32, see BFD_RELOC_PJ_CODE_HI16, see BFD_RELOC_PJ_CODE_LO16, see BFD_RELOC_PJ_CODE_REL16, see BFD_RELOC_PJ_CODE_REL32, see BFD_RELOC_PPC64_ADDR16_DS, see BFD_RELOC_PPC64_ADDR16_LO_DS, see BFD_RELOC_PPC64_DTPREL16_DS, see BFD_RELOC_PPC64_DTPREL16_HIGHER, see BFD_RELOC_PPC64_DTPREL16_HIGHERA, see BFD_RELOC_PPC64_DTPREL16_HIGHEST, see BFD_RELOC_PPC64_DTPREL16_HIGHESTA, see BFD_RELOC_PPC64_DTPREL16_LO_DS, see BFD_RELOC_PPC64_GOT16_DS, see BFD_RELOC_PPC64_GOT16_LO_DS, see BFD_RELOC_PPC64_HIGHER, see BFD_RELOC_PPC64_HIGHER_S, see BFD_RELOC_PPC64_HIGHEST, see BFD_RELOC_PPC64_HIGHEST_S, see BFD_RELOC_PPC64_PLT16_LO_DS, see BFD_RELOC_PPC64_PLTGOT16, see BFD_RELOC_PPC64_PLTGOT16_DS, see BFD_RELOC_PPC64_PLTGOT16_HA, see BFD_RELOC_PPC64_PLTGOT16_HI, see BFD_RELOC_PPC64_PLTGOT16_LO, see BFD_RELOC_PPC64_PLTGOT16_LO_DS, see BFD_RELOC_PPC64_SECTOFF_DS, see BFD_RELOC_PPC64_SECTOFF_LO_DS, see BFD_RELOC_PPC64_TOC, see BFD_RELOC_PPC64_TOC16_DS, see BFD_RELOC_PPC64_TOC16_HA, see BFD_RELOC_PPC64_TOC16_HI, see BFD_RELOC_PPC64_TOC16_LO, see BFD_RELOC_PPC64_TOC16_LO_DS, see BFD_RELOC_PPC64_TPREL16_DS, see BFD_RELOC_PPC64_TPREL16_HIGHER, see BFD_RELOC_PPC64_TPREL16_HIGHERA, see BFD_RELOC_PPC64_TPREL16_HIGHEST, see BFD_RELOC_PPC64_TPREL16_HIGHESTA, see BFD_RELOC_PPC64_TPREL16_LO_DS, see BFD_RELOC_PPC_B16, see BFD_RELOC_PPC_B16_BRNTAKEN, see BFD_RELOC_PPC_B16_BRTAKEN, see BFD_RELOC_PPC_B26, see BFD_RELOC_PPC_BA16, see BFD_RELOC_PPC_BA16_BRNTAKEN, see BFD_RELOC_PPC_BA16_BRTAKEN, see BFD_RELOC_PPC_BA26, see BFD_RELOC_PPC_COPY, see BFD_RELOC_PPC_DTPMOD, see BFD_RELOC_PPC_DTPREL, see BFD_RELOC_PPC_DTPREL16, see BFD_RELOC_PPC_DTPREL16_HA, see BFD_RELOC_PPC_DTPREL16_HI, see BFD_RELOC_PPC_DTPREL16_LO, see BFD_RELOC_PPC_EMB_BIT_FLD, see BFD_RELOC_PPC_EMB_MRKREF, see BFD_RELOC_PPC_EMB_NADDR16, see BFD_RELOC_PPC_EMB_NADDR16_HA, see BFD_RELOC_PPC_EMB_NADDR16_HI, see BFD_RELOC_PPC_EMB_NADDR16_LO, see BFD_RELOC_PPC_EMB_NADDR32, see BFD_RELOC_PPC_EMB_RELSDA, see BFD_RELOC_PPC_EMB_RELSEC16, see BFD_RELOC_PPC_EMB_RELST_HA, see BFD_RELOC_PPC_EMB_RELST_HI, see BFD_RELOC_PPC_EMB_RELST_LO, see BFD_RELOC_PPC_EMB_SDA21, see BFD_RELOC_PPC_EMB_SDA2I16, see BFD_RELOC_PPC_EMB_SDA2REL, see BFD_RELOC_PPC_EMB_SDAI16, see BFD_RELOC_PPC_GLOB_DAT, see BFD_RELOC_PPC_GOT_DTPREL16, see BFD_RELOC_PPC_GOT_DTPREL16_HA, see BFD_RELOC_PPC_GOT_DTPREL16_HI, see BFD_RELOC_PPC_GOT_DTPREL16_LO, see BFD_RELOC_PPC_GOT_TLSGD16, see BFD_RELOC_PPC_GOT_TLSGD16_HA, see BFD_RELOC_PPC_GOT_TLSGD16_HI, see BFD_RELOC_PPC_GOT_TLSGD16_LO, see BFD_RELOC_PPC_GOT_TLSLD16, see BFD_RELOC_PPC_GOT_TLSLD16_HA, see BFD_RELOC_PPC_GOT_TLSLD16_HI, see BFD_RELOC_PPC_GOT_TLSLD16_LO, see BFD_RELOC_PPC_GOT_TPREL16, see BFD_RELOC_PPC_GOT_TPREL16_HA, see BFD_RELOC_PPC_GOT_TPREL16_HI, see BFD_RELOC_PPC_GOT_TPREL16_LO, see BFD_RELOC_PPC_JMP_SLOT, see BFD_RELOC_PPC_LOCAL24PC, see BFD_RELOC_PPC_RELATIVE, see BFD_RELOC_PPC_TLS, see BFD_RELOC_PPC_TOC16, see BFD_RELOC_PPC_TPREL, see BFD_RELOC_PPC_TPREL16, see BFD_RELOC_PPC_TPREL16_HA, see BFD_RELOC_PPC_TPREL16_HI, see BFD_RELOC_PPC_TPREL16_LO, see BFD_RELOC_RVA, see BFD_RELOC_SCORE16_BRANCH, see BFD_RELOC_SCORE16_JMP, see BFD_RELOC_SCORE_BRANCH, see BFD_RELOC_SCORE_CALL15, see BFD_RELOC_SCORE_DUMMY1, see BFD_RELOC_SCORE_DUMMY2, see BFD_RELOC_SCORE_DUMMY_HI16, see BFD_RELOC_SCORE_GOT15, see BFD_RELOC_SCORE_GOT_LO16, see BFD_RELOC_SCORE_GPREL15, see BFD_RELOC_SCORE_JMP, see BFD_RELOC_SH_ALIGN, see BFD_RELOC_SH_CODE, see BFD_RELOC_SH_COPY, see BFD_RELOC_SH_COPY64, see BFD_RELOC_SH_COUNT, see BFD_RELOC_SH_DATA, see BFD_RELOC_SH_DISP12, see BFD_RELOC_SH_DISP12BY2, see BFD_RELOC_SH_DISP12BY4, see BFD_RELOC_SH_DISP12BY8, see BFD_RELOC_SH_DISP20, see BFD_RELOC_SH_DISP20BY8, see BFD_RELOC_SH_GLOB_DAT, see BFD_RELOC_SH_GLOB_DAT64, see BFD_RELOC_SH_GOT10BY4, see BFD_RELOC_SH_GOT10BY8, see BFD_RELOC_SH_GOT_HI16, see BFD_RELOC_SH_GOT_LOW16, see BFD_RELOC_SH_GOT_MEDHI16, see BFD_RELOC_SH_GOT_MEDLOW16, see BFD_RELOC_SH_GOTOFF_HI16, see BFD_RELOC_SH_GOTOFF_LOW16, see BFD_RELOC_SH_GOTOFF_MEDHI16, see BFD_RELOC_SH_GOTOFF_MEDLOW16, see BFD_RELOC_SH_GOTPC, see BFD_RELOC_SH_GOTPC_HI16, see BFD_RELOC_SH_GOTPC_LOW16, see BFD_RELOC_SH_GOTPC_MEDHI16, see BFD_RELOC_SH_GOTPC_MEDLOW16, see BFD_RELOC_SH_GOTPLT10BY4, see BFD_RELOC_SH_GOTPLT10BY8, see BFD_RELOC_SH_GOTPLT32, see BFD_RELOC_SH_GOTPLT_HI16, see BFD_RELOC_SH_GOTPLT_LOW16, see BFD_RELOC_SH_GOTPLT_MEDHI16, see BFD_RELOC_SH_GOTPLT_MEDLOW16, see BFD_RELOC_SH_IMM3, see BFD_RELOC_SH_IMM3U, see BFD_RELOC_SH_IMM4, see BFD_RELOC_SH_IMM4BY2, see BFD_RELOC_SH_IMM4BY4, see BFD_RELOC_SH_IMM8, see BFD_RELOC_SH_IMM8BY2, see BFD_RELOC_SH_IMM8BY4, see BFD_RELOC_SH_IMM_HI16, see BFD_RELOC_SH_IMM_HI16_PCREL, see BFD_RELOC_SH_IMM_LOW16, see BFD_RELOC_SH_IMM_LOW16_PCREL, see BFD_RELOC_SH_IMM_MEDHI16, see BFD_RELOC_SH_IMM_MEDHI16_PCREL, see BFD_RELOC_SH_IMM_MEDLOW16, see BFD_RELOC_SH_IMM_MEDLOW16_PCREL, see BFD_RELOC_SH_IMMS10, see BFD_RELOC_SH_IMMS10BY2, see BFD_RELOC_SH_IMMS10BY4, see BFD_RELOC_SH_IMMS10BY8, see BFD_RELOC_SH_IMMS16, see BFD_RELOC_SH_IMMS6, see BFD_RELOC_SH_IMMS6BY32, see BFD_RELOC_SH_IMMU16, see BFD_RELOC_SH_IMMU5, see BFD_RELOC_SH_IMMU6, see BFD_RELOC_SH_JMP_SLOT, see BFD_RELOC_SH_JMP_SLOT64, see BFD_RELOC_SH_LABEL, see BFD_RELOC_SH_LOOP_END, see BFD_RELOC_SH_LOOP_START, see BFD_RELOC_SH_PCDISP12BY2, see BFD_RELOC_SH_PCDISP8BY2, see BFD_RELOC_SH_PCRELIMM8BY2, see BFD_RELOC_SH_PCRELIMM8BY4, see BFD_RELOC_SH_PLT_HI16, see BFD_RELOC_SH_PLT_LOW16, see BFD_RELOC_SH_PLT_MEDHI16, see BFD_RELOC_SH_PLT_MEDLOW16, see BFD_RELOC_SH_PT_16, see BFD_RELOC_SH_RELATIVE, see BFD_RELOC_SH_RELATIVE64, see BFD_RELOC_SH_SHMEDIA_CODE, see BFD_RELOC_SH_SWITCH16, see BFD_RELOC_SH_SWITCH32, see BFD_RELOC_SH_TLS_DTPMOD32, see BFD_RELOC_SH_TLS_DTPOFF32, see BFD_RELOC_SH_TLS_GD_32, see BFD_RELOC_SH_TLS_IE_32, see BFD_RELOC_SH_TLS_LD_32, see BFD_RELOC_SH_TLS_LDO_32, see BFD_RELOC_SH_TLS_LE_32, see BFD_RELOC_SH_TLS_TPOFF32, see BFD_RELOC_SH_USES, see BFD_RELOC_SPARC13, see BFD_RELOC_SPARC22, see BFD_RELOC_SPARC_10, see BFD_RELOC_SPARC_11, see BFD_RELOC_SPARC_5, see BFD_RELOC_SPARC_6, see BFD_RELOC_SPARC_64, see BFD_RELOC_SPARC_7, see BFD_RELOC_SPARC_BASE13, see BFD_RELOC_SPARC_BASE22, see BFD_RELOC_SPARC_COPY, see BFD_RELOC_SPARC_DISP64, see BFD_RELOC_SPARC_GLOB_DAT, see BFD_RELOC_SPARC_GOT10, see BFD_RELOC_SPARC_GOT13, see BFD_RELOC_SPARC_GOT22, see BFD_RELOC_SPARC_H44, see BFD_RELOC_SPARC_HH22, see BFD_RELOC_SPARC_HIX22, see BFD_RELOC_SPARC_HM10, see BFD_RELOC_SPARC_JMP_SLOT, see BFD_RELOC_SPARC_L44, see BFD_RELOC_SPARC_LM22, see BFD_RELOC_SPARC_LOX10, see BFD_RELOC_SPARC_M44, see BFD_RELOC_SPARC_OLO10, see BFD_RELOC_SPARC_PC10, see BFD_RELOC_SPARC_PC22, see BFD_RELOC_SPARC_PC_HH22, see BFD_RELOC_SPARC_PC_HM10, see BFD_RELOC_SPARC_PC_LM22, see BFD_RELOC_SPARC_PLT32, see BFD_RELOC_SPARC_PLT64, see BFD_RELOC_SPARC_REGISTER, see BFD_RELOC_SPARC_RELATIVE, see BFD_RELOC_SPARC_REV32, see BFD_RELOC_SPARC_TLS_DTPMOD32, see BFD_RELOC_SPARC_TLS_DTPMOD64, see BFD_RELOC_SPARC_TLS_DTPOFF32, see BFD_RELOC_SPARC_TLS_DTPOFF64, see BFD_RELOC_SPARC_TLS_GD_ADD, see BFD_RELOC_SPARC_TLS_GD_CALL, see BFD_RELOC_SPARC_TLS_GD_HI22, see BFD_RELOC_SPARC_TLS_GD_LO10, see BFD_RELOC_SPARC_TLS_IE_ADD, see BFD_RELOC_SPARC_TLS_IE_HI22, see BFD_RELOC_SPARC_TLS_IE_LD, see BFD_RELOC_SPARC_TLS_IE_LDX, see BFD_RELOC_SPARC_TLS_IE_LO10, see BFD_RELOC_SPARC_TLS_LDM_ADD, see BFD_RELOC_SPARC_TLS_LDM_CALL, see BFD_RELOC_SPARC_TLS_LDM_HI22, see BFD_RELOC_SPARC_TLS_LDM_LO10, see BFD_RELOC_SPARC_TLS_LDO_ADD, see BFD_RELOC_SPARC_TLS_LDO_HIX22, see BFD_RELOC_SPARC_TLS_LDO_LOX10, see BFD_RELOC_SPARC_TLS_LE_HIX22, see BFD_RELOC_SPARC_TLS_LE_LOX10, see BFD_RELOC_SPARC_TLS_TPOFF32, see BFD_RELOC_SPARC_TLS_TPOFF64, see BFD_RELOC_SPARC_UA16, see BFD_RELOC_SPARC_UA32, see BFD_RELOC_SPARC_UA64, see BFD_RELOC_SPARC_WDISP16, see BFD_RELOC_SPARC_WDISP19, see BFD_RELOC_SPARC_WDISP22, see BFD_RELOC_SPARC_WPLT30, see BFD_RELOC_SPU_HI16, see BFD_RELOC_SPU_IMM10, see BFD_RELOC_SPU_IMM10W, see BFD_RELOC_SPU_IMM16, see BFD_RELOC_SPU_IMM16W, see BFD_RELOC_SPU_IMM18, see BFD_RELOC_SPU_IMM7, see BFD_RELOC_SPU_IMM8, see BFD_RELOC_SPU_LO16, see BFD_RELOC_SPU_PCREL16, see BFD_RELOC_SPU_PCREL9a, see BFD_RELOC_SPU_PCREL9b, see BFD_RELOC_THUMB_PCREL_BLX, see BFD_RELOC_THUMB_PCREL_BRANCH12, see BFD_RELOC_THUMB_PCREL_BRANCH20, see BFD_RELOC_THUMB_PCREL_BRANCH23, see BFD_RELOC_THUMB_PCREL_BRANCH25, see BFD_RELOC_THUMB_PCREL_BRANCH7, see BFD_RELOC_THUMB_PCREL_BRANCH9, see BFD_RELOC_TIC30_LDP, see BFD_RELOC_TIC54X_16_OF_23, see BFD_RELOC_TIC54X_23, see BFD_RELOC_TIC54X_MS7_OF_23, see BFD_RELOC_TIC54X_PARTLS7, see BFD_RELOC_TIC54X_PARTMS9, see bfd_reloc_type_lookup, see BFD_RELOC_V850_22_PCREL, see BFD_RELOC_V850_9_PCREL, see BFD_RELOC_V850_ALIGN, see BFD_RELOC_V850_CALLT_16_16_OFFSET, see BFD_RELOC_V850_CALLT_6_7_OFFSET, see BFD_RELOC_V850_LO16_SPLIT_OFFSET, see BFD_RELOC_V850_LONGCALL, see BFD_RELOC_V850_LONGJUMP, see BFD_RELOC_V850_SDA_15_16_OFFSET, see BFD_RELOC_V850_SDA_16_16_OFFSET, see BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET, see BFD_RELOC_V850_TDA_16_16_OFFSET, see BFD_RELOC_V850_TDA_4_4_OFFSET, see BFD_RELOC_V850_TDA_4_5_OFFSET, see BFD_RELOC_V850_TDA_6_8_OFFSET, see BFD_RELOC_V850_TDA_7_7_OFFSET, see BFD_RELOC_V850_TDA_7_8_OFFSET, see BFD_RELOC_V850_ZDA_15_16_OFFSET, see BFD_RELOC_V850_ZDA_16_16_OFFSET, see BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET, see BFD_RELOC_VAX_GLOB_DAT, see BFD_RELOC_VAX_JMP_SLOT, see BFD_RELOC_VAX_RELATIVE, see BFD_RELOC_VPE4KMATH_DATA, see BFD_RELOC_VPE4KMATH_INSN, see BFD_RELOC_VTABLE_ENTRY, see BFD_RELOC_VTABLE_INHERIT, see BFD_RELOC_X86_64_32S, see BFD_RELOC_X86_64_COPY, see BFD_RELOC_X86_64_DTPMOD64, see BFD_RELOC_X86_64_DTPOFF32, see BFD_RELOC_X86_64_DTPOFF64, see BFD_RELOC_X86_64_GLOB_DAT, see BFD_RELOC_X86_64_GOT32, see BFD_RELOC_X86_64_GOT64, see BFD_RELOC_X86_64_GOTOFF64, see BFD_RELOC_X86_64_GOTPC32, see BFD_RELOC_X86_64_GOTPC32_TLSDESC, see BFD_RELOC_X86_64_GOTPC64, see BFD_RELOC_X86_64_GOTPCREL, see BFD_RELOC_X86_64_GOTPCREL64, see BFD_RELOC_X86_64_GOTPLT64, see BFD_RELOC_X86_64_GOTTPOFF, see BFD_RELOC_X86_64_JUMP_SLOT, see BFD_RELOC_X86_64_PLT32, see BFD_RELOC_X86_64_PLTOFF64, see BFD_RELOC_X86_64_RELATIVE, see BFD_RELOC_X86_64_TLSDESC, see BFD_RELOC_X86_64_TLSDESC_CALL, see BFD_RELOC_X86_64_TLSGD, see BFD_RELOC_X86_64_TLSLD, see BFD_RELOC_X86_64_TPOFF32, see BFD_RELOC_X86_64_TPOFF64, see BFD_RELOC_XC16X_PAG, see BFD_RELOC_XC16X_POF, see BFD_RELOC_XC16X_SEG, see BFD_RELOC_XC16X_SOF, see BFD_RELOC_XSTORMY16_12, see BFD_RELOC_XSTORMY16_24, see BFD_RELOC_XSTORMY16_FPTR16, see BFD_RELOC_XSTORMY16_REL_12, see BFD_RELOC_XTENSA_ASM_EXPAND, see BFD_RELOC_XTENSA_ASM_SIMPLIFY, see BFD_RELOC_XTENSA_DIFF16, see BFD_RELOC_XTENSA_DIFF32, see BFD_RELOC_XTENSA_DIFF8, see BFD_RELOC_XTENSA_GLOB_DAT, see BFD_RELOC_XTENSA_JMP_SLOT, see BFD_RELOC_XTENSA_OP0, see BFD_RELOC_XTENSA_OP1, see BFD_RELOC_XTENSA_OP2, see BFD_RELOC_XTENSA_PLT, see BFD_RELOC_XTENSA_RELATIVE, see BFD_RELOC_XTENSA_RTLD, see BFD_RELOC_XTENSA_SLOT0_ALT, see BFD_RELOC_XTENSA_SLOT0_OP, see BFD_RELOC_XTENSA_SLOT10_ALT, see BFD_RELOC_XTENSA_SLOT10_OP, see BFD_RELOC_XTENSA_SLOT11_ALT, see BFD_RELOC_XTENSA_SLOT11_OP, see BFD_RELOC_XTENSA_SLOT12_ALT, see BFD_RELOC_XTENSA_SLOT12_OP, see BFD_RELOC_XTENSA_SLOT13_ALT, see BFD_RELOC_XTENSA_SLOT13_OP, see BFD_RELOC_XTENSA_SLOT14_ALT, see BFD_RELOC_XTENSA_SLOT14_OP, see BFD_RELOC_XTENSA_SLOT1_ALT, see BFD_RELOC_XTENSA_SLOT1_OP, see BFD_RELOC_XTENSA_SLOT2_ALT, see BFD_RELOC_XTENSA_SLOT2_OP, see BFD_RELOC_XTENSA_SLOT3_ALT, see BFD_RELOC_XTENSA_SLOT3_OP, see BFD_RELOC_XTENSA_SLOT4_ALT, see BFD_RELOC_XTENSA_SLOT4_OP, see BFD_RELOC_XTENSA_SLOT5_ALT, see BFD_RELOC_XTENSA_SLOT5_OP, see BFD_RELOC_XTENSA_SLOT6_ALT, see BFD_RELOC_XTENSA_SLOT6_OP, see BFD_RELOC_XTENSA_SLOT7_ALT, see BFD_RELOC_XTENSA_SLOT7_OP, see BFD_RELOC_XTENSA_SLOT8_ALT, see BFD_RELOC_XTENSA_SLOT8_OP, see BFD_RELOC_XTENSA_SLOT9_ALT, see BFD_RELOC_XTENSA_SLOT9_OP, see BFD_RELOC_Z80_DISP8, see BFD_RELOC_Z8K_CALLR, see BFD_RELOC_Z8K_DISP7, see BFD_RELOC_Z8K_IMM4L, see bfd_scan_arch, see bfd_scan_vma, see bfd_seach_for_target, see bfd_section_already_linked, see bfd_section_list_clear, see bfd_sections_find_if, see bfd_set_arch_info, see bfd_set_archive_head, see bfd_set_default_target, see bfd_set_error, see bfd_set_error_handler, see bfd_set_error_program_name, see bfd_set_file_flags, see bfd_set_format, see bfd_set_gp_size, see bfd_set_private_flags, see bfd_set_reloc, see bfd_set_section_contents, see bfd_set_section_flags, see bfd_set_section_size, see bfd_set_start_address, see bfd_set_symtab, see bfd_symbol_info, see bfd_target_list, see bfd_write_bigendian_4byte_int, see bfd_zalloc, see bfd_zalloc2, see C coff_symbol_type, see core_file_matches_executable_p, see F find_separate_debug_file, see G generic_core_file_matches_executable_p, see get_debug_link_info, see H Hash tables, see I internal object-file format, see L Linker, see O Other functions, see S separate_debug_file_exists, see struct bfd_iovec, see T target vector (_bfd_final_link), see target vector (_bfd_link_add_symbols), see target vector (_bfd_link_hash_table_create), see The HOWTO Macro, see W what is it?, see